scholarly journals Characterizations of Lamellar Interfaces and Segregations in a PST-TiAl Intermetallic Alloy by an Analytical Scanning Transmission Electron Microscope

2000 ◽  
Vol 652 ◽  
Author(s):  
Wei Zhao ◽  
David E. Luzzi

ABSTRACTPolysynthetically-twinned titanium aluminide (PST-TiAl), a fully lamellar γTiAl + α2-Ti3Al dual-phase alloy, is under evaluation for applications in rotary components in aircraft and automobile industries due to its high specific strength, and a high strength-retention capability at elevated-temperatures. However, the low ductility at room- to mid-high temperatures of the material hinders its application. Additions of certain tertiary elements to the binary TiAl system appear to improve the ductility at room- to mid-high temperatures, thus a balance among strength, ductility, and fracture toughness can be expected. In this article, segregation of tertiary elements to the lamellar interfaces is investigated. Single crystals of a TiAl with 0.6% atomic percentage tertiary additions are grown by an optical float-zone method. Segregation to the lamellar interfaces and the microstructure of the interfaces are investigated. Structures of the lamellar interfaces are characterized, and microchemistry and distribution habits of these elements along the γ+α2 lamellar boundaries as well as the γ-γ lamellar and domain boundaries are analyzed.

Author(s):  
Mihaela Albu ◽  
Bernd Panzirsch ◽  
Hartmuth Schröttner ◽  
Stefan Mitsche ◽  
Klaus Reichmann ◽  
...  

Powder and SLM additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr)-oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating up to 950°C in the scanning transmission electron microscope. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles as well as the precipitation of Ni and Cr particles upon in situ heating have as well been systematically documented.


2016 ◽  
Vol 61 (2) ◽  
pp. 535-542 ◽  
Author(s):  
A. Kruk ◽  
G. Cempura ◽  
S. Lech ◽  
A. Czyrska -Filemonowicz

Abstract Allvac 718Plus (718Plus) is a high strength, corrosion resistant nickel- based superalloy used for application in power generation, aeronautics and aerospace industry. The 718Plus microstructure consists of a γ matrix with γ’-Ni3(Al,Ti) and some δ- Ni3Nb phases as well as lamellar particles (η-Ni3Ti, η*-Ni6AlNb or Ni6(Al,Ti)Nb) precipitated at the grain boundaries. The primary strengthening mechanism for this alloy is a precipitation hardening, therefore size and distribution of precipitates are critical for the performance of the alloy. The aim of this study was to characterize precipitates in the 718Plus superalloy using Scanning Transmission Electron Microscope combined with Energy Dispersive X-ray Spectroscopy (STEM-EDX) and Focused Ion Beam Scanning Electron Microscope (FIB-SEM). The STEM-EDX and FIB-SEM tomography techniques were used for 3D imaging and metrology of the precipitates. Transmission electron microscopy and EDX spectroscopy were used to reveal details of the 718Plus microstructure and allow determine chemical composition of the phases. The study showed that electron tomography techniques permit to obtain complementary information about microstructural features (precipitates size, shape and their 3D distribution) in the reconstructed volume with comparison to conventional particle analysis methods, e.g. quantitative TEM and SEM metallography


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7784
Author(s):  
Mihaela Albu ◽  
Bernd Panzirsch ◽  
Hartmuth Schröttner ◽  
Stefan Mitsche ◽  
Klaus Reichmann ◽  
...  

Powder and selective laser melting (SLM) additively manufactured parts of X5CrNiCuNb17-4 maraging steel were systematically investigated by electron microscopy to understand the relationship between the properties of the powder grains and the microstructure of the printed parts. We prove that satellites, irregularities and superficial oxidation of powder particles can be transformed into an advantage through the formation of nanoscale (AlMnSiTiCr) oxides in the matrix during the printing process. The nano-oxides showed extensive stability in terms of size, spherical morphology, chemical composition and crystallographic disorder upon in situ heating in the scanning transmission electron microscope up to 950 °C. Their presence thus indicates a potential for oxide-dispersive strengthening of this steel, which may be beneficial for creep resistance at elevated temperatures. The nucleation of copper clusters and their evolution into nanoparticles, and the precipitation of Ni and Cr particles upon in situ heating, have been systematically documented as well.


1997 ◽  
Vol 3 (S2) ◽  
pp. 971-972
Author(s):  
Ian M. Anderson ◽  
Jim Bentley

A spectrum image can be acquired with a scanning transmission electron microscope (STEM) by translating a focused probe over a two-dimensional area of a specimen and acquiring a spectrum at an array of positions of the probe. Analogously, a rocking-beam spectrum image is formed when the incident electron beam is tilted relative to the specimen and a series of spectra is acquired from a single volume of the specimen. The orientation-dependence of such a series of spectra can be used to extract the atomic site-distributions of an ordered alloy or compound. One of the drawbacks of spectrum image acquisition is that the raw images are typically files of many megabytes, whereas the actual information of interest may be reducible to a fraction of this size. The dimension of the data set may be reduced by a number of methods. For example, Rossouw and coworkers have acquired rocking-beam X-ray maps for the characterization of atomic site-distributions in titanium aluminide intermetallic alloys.


2001 ◽  
Vol 7 (S2) ◽  
pp. 308-309
Author(s):  
N. D. Browning ◽  
J. P. Buban ◽  
Y. Ito ◽  
R. F. Klie ◽  
Y. Lei

The properties of ceramic oxides being developed for such varied applications as fuel cells, ionic transporting membranes, high-Tc superconductors, ferroelectrics and varistors are dominated by the presence of grain boundaries. Key to controlling the electronic properties of the grain boundaries in these materials is a fundamental understanding of the complex relationship between structure, composition and local electronic structure. The ability to characterize and directly correlate these parameters on the atomic scale is afforded by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Furthermore, the recent development of in-situ heating capabilities in the JEOL 201 OF STEM/TEM permits atomic resolution analysis to be performed at elevated temperatures and the interactions of grain boundaries with the oxygen vacancies determined.Figure 1 shows an example of the type of experiment that can be performed using these methods.


2014 ◽  
Vol 778-780 ◽  
pp. 358-361 ◽  
Author(s):  
Takahiro Sato ◽  
Yuya Suzuki ◽  
Hiroyuki Ito ◽  
Toshiyuki Isshiki ◽  
Munetoshi Fukui

The conventional KOH etching method at elevated temperatures is an easy way to study SiC dislocations, but presents problems due to an increased etch rate. Here, we examine the application of low temperature KOH treatment for the analysis of dislocation cores and etch pits in SiC. A low energy scanning electron microscope (SEM) is effective to classify dislocation kinds. The scanning transmission electron microscope (STEM) observation of thick samples prepared by the in situ micro-sampling technique enables evaluation of detailed dislocation properties.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
J. S. Wall ◽  
J. P. Langmore ◽  
H. Isaacson ◽  
A. V. Crewe

The scanning transmission electron microscope (STEM) constructed by the authors employs a field emission gun and a 1.15 mm focal length magnetic lens to produce a probe on the specimen. The aperture size is chosen to allow one wavelength of spherical aberration at the edge of the objective aperture. Under these conditions the profile of the focused spot is expected to be similar to an Airy intensity distribution with the first zero at the same point but with a peak intensity 80 per cent of that which would be obtained If the lens had no aberration. This condition is attained when the half angle that the incident beam subtends at the specimen, 𝛂 = (4𝛌/Cs)¼


Author(s):  
L. Gandolfi ◽  
J. Reiffel

Calculations have been performed on the contrast obtainable, using the Scanning Transmission Electron Microscope, in the observation of thick specimens. Recent research indicates a revival of an earlier interest in the observation of thin specimens with the view of comparing the attainable contrast using both types of specimens.Potential for biological applications of scanning transmission electron microscopy has led to a proliferation of the literature concerning specimen preparation methods and the controversy over “to stain or not to stain” in combination with the use of the dark field operating mode and the same choice of technique using bright field mode of operation has not yet been resolved.


Author(s):  
H. Koike ◽  
S. Sakurai ◽  
K. Ueno ◽  
M. Watanabe

In recent years, there has been increasing demand for higher voltage SEMs, in the field of surface observation, especially that of magnetic domains, dislocations, and electron channeling patterns by backscattered electron microscopy. On the other hand, the resolution of the CTEM has now reached 1 ∼ 2Å, and several reports have recently been made on the observation of atom images, indicating that the ultimate goal of morphological observation has beem nearly achieved.


Sign in / Sign up

Export Citation Format

Share Document