Phase Formation Kinetics in Sol-Gel Derived Strontium Bismith Tantalate

2001 ◽  
Vol 666 ◽  
Author(s):  
Yun-Mo Sung ◽  
Woo-Chul Kwack

ABSTRACTPhase formation characteristics of Sr0.7Bi2.4Ta2O9 (SBT) powder, synthesized via sol-gel and pyrolysis process, was investigated by using thermal analysis. Each of the two exotherms, appearing in differential thermal analysis (DTA) scan curves, was identified as crystallization of fluorite phase and transformation of fluorite to aurivillius phase, respectively by using x-ray diffraction (XRD). By applying non-isothermal kinetic analyses to the DTA results, activation energy values for the formation of fluorite and aurivillius phases were determined as 192 and 375 kJ/mol, respectively and Avrami exponent values for each reaction were determined as 0.91 and 0.96, respectively. These activation energy and Avrami exponent values were discussed in detail to understand phase formation mechanism in SBT system.

2001 ◽  
Vol 16 (7) ◽  
pp. 2039-2044 ◽  
Author(s):  
Yun-Mo Sung

Phase formation characteristics of Sr0.7Bi2.4Ta2O9 (SBT) powder, synthesized via the sol-gel and pyrolysis processes, was investigated using the thermal analysis technique. The two exotherms, appearing in the differential thermal analysis (DTA) curve, were identified as crystallization of fluorite phase and transformation of fluorite to Aurivillius phase, respectively, using x-ray diffraction. Nonisothermal kinetic analysis of the DTA results shows activation energy values for the formation of fluorite and Aurivillius phases as 192 and 375 kJ/mol, respectively, and Avrami exponent values for each reaction as 0.91 and 0.96, respectively. The results of this investigation are presented and discussed in detail to understand the phase formation mechanism in the SBT system.


2002 ◽  
Vol 17 (6) ◽  
pp. 1463-1468 ◽  
Author(s):  
Woo-Chul Kwak ◽  
Yun-Mo Sung

The crystallization kinetics of Sr0.7Bi2.3Ta2O9 (SBT) and 0.7SrBi2Ta2O9–0.3Bi3TiTaO9 (SBT-BTT) thin films formed by the sol-gel and spin coating techniques were studied. Phase formation and crystal growth are greatly affected by the film composition and crystallization temperature. Isothermal kinetic analysis was performed on the x-ray diffraction results of the thin films heated in the range of 730 to 760 °C at 10 °C intervals. Activation energy and Avrami exponent values were determined for the fluorite-to-Aurivillus phase transformation. A reduction of approximately 51 kJ/mol in activation energy was observed for the SBT-BTT thin films, and an Avrami exponent value of approximately 1.0 was obtained for both the SBT and SBT-BTT. A comparison is made, and the possible crystallization mechanism is discussed.


2003 ◽  
Vol 784 ◽  
Author(s):  
Yun-Mo Sung ◽  
Woo-Chul Kwak ◽  
Se-Yon Jung ◽  
Seung-Joon Hwang

ABSTRACTPt/Ti/SiO2/Si substrates seeded by SBT nanoparticles (∼60–80 nm) were used to enhance the phase formation kinetics of Sr0.7Bi2.4Ta2O9 (SBT) thin films. The volume fractions of Aurivillius phase formation obtained through quantitative x-ray diffraction (Q-XRD) analyses showed highly enhanced kinetics in seeded SBT thin films. The Avrami exponents were determined as ∼1.4 and ∼0.9 for unseeded and seeded SBT films, respectively, which reveals different nucleation modes. By using Arrhenius–type plots the activation energy values for the phase transformation of unseeded and seeded SBT thin films were determined to be ∼264 and ∼168 kJ/mol, respectively. This gives a key reason to the enhanced kinetics in seeded films. Microstructural analyses on unseeded SBT thin films showed formation of randomly oriented needle-like crystals, while those on seeded ones showed formation of domains comprised of directionally grown worm-like crystals.


2003 ◽  
Vol 18 (2) ◽  
pp. 387-395 ◽  
Author(s):  
Yun-Mo Sung ◽  
Gopinathan M. Anilkumar ◽  
Seung-Joon Hwang

Sr0.7Bi2.4Ta2O9 (SBT) thin films were deposited on unseeded and SBT nanoparticle (approximately 60–80 nm) seeded Pt/Ti/SiO2Si substrates via sol-gel and spin-coating techniques. The SBT thin films were heated at 600 °C for 1 h to form the fluorite phase, and these fluorite films were further heated at 730–760 °C for fluorite-to-Aurivillius phase transformation. The volume fractions of Aurivillius phase formation obtained through quantitative x-ray diffraction analyses showed highly enhanced kinetics in seeded SBT thin films. Johnson–Mehl–Avrami isothermal kinetic analyses were performed for the characterization of Aurivillius phase formation in unseeded and seeded SBT thin films using the volume fraction values. The Avrami exponents were determined as approximately 1.4 and approximately 0.9 for unseeded and seeded SBT films, respectively, which reveals different nucleation modes. By using Arrhenius-type plots, the activation energy values for the phase transformation of unseeded and seeded SBT thin films were determined to be approximately 264 and approximately 168 kJ/mol, respectively. This gives a key reason for the enhanced kinetics in seeded films. Microstructural analyses on unseeded SBT thin films showed formation of randomly oriented needlelike crystals, while those on seeded ones showed formation of domains comprising directionally grown wormlike crystals. On the basis of the phase formation kinetics and microstructural development, a model representing different nucleation and crystal growth mechanisms for the unseeded and seeded SBT thin films was proposed.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


2013 ◽  
Vol 538 ◽  
pp. 142-145 ◽  
Author(s):  
X.F. Chen ◽  
J. Li ◽  
T.T. Feng ◽  
Y.S. Jiang ◽  
X.H. Zhang ◽  
...  

The forsterite-structure Mg2SiO4 was successfully synthesized by the aqueous sol-gel method using Si sols dioxide and magnesium nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscope (SEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized Mg2SiO4 powders were successfully obtained at 850 °C with particle size of 60~80 nm.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ekaterina V. Borisova ◽  
Alexey V. Ignatov ◽  
Eugeni I. Get'man ◽  
Stanislav N. Loboda ◽  
Lyudmyla I. Ardanova ◽  
...  

Sodium europium silicate, NaEu9(SiO4)6O2, with apatite structure has been obtained and studied using X-ray diffraction and SEM. It has been shown that sodium sublimation does not take place upon synthesis by the sol-gel method. Rietveld refinement has revealed that sodium atoms are ordered and occupy the 4f position. O(4) atoms not related to silicate ions are placed at the centers of Eu(2) triangles. DC and AC electric conductivity and activation energy have been determined for the compound studied.


2020 ◽  
Vol 833 ◽  
pp. 214-219
Author(s):  
Nik Syahirah Aliaa Nik Sharifulden ◽  
Siti Noor Fazliah Mohd Noor ◽  
Siti Fatimah Samsurrijal ◽  
Siti Nur Liyana Ramlee ◽  
Nur Syazana Azizan

Bioactivity is an important aspect in biomaterial science ensuring materials used are safe for clinical application. The study describes fabrication of composites containing polylactic acid (PLA) – polyethylene glycol (PEG) with incorporation of sol-gel derived 45S5 bioactive glass (BG). Thermal analysis via Differential Thermal Analysis shows a favorable point over degree of crystallization that influence cells attachment, although non-significant difference in values indicates BG has homogenously dispersed. This correlates to X-ray diffraction analysis where non-significant difference is seen in intensities of the diffraction peaks, which confirms low impact of BG brittleness properties over the fabricated composite. Composites’ pH and degradation study in Simulated Body Fluid shows a steady increment profile over time and lower degradation rate for the composite after incorporation of BG. In vitro cell proliferation study also showed that HDF cells seeded on composite film of P/BG2.5 exhibit highest cell viability with steady increment of proliferation throughout the observation period.


2012 ◽  
Vol 512-515 ◽  
pp. 207-210
Author(s):  
Quan Wen ◽  
Jian Feng Huang ◽  
Li Yun Cao ◽  
Jian Peng Wu

V2O5 powders were successfully synthesized by the EDTA assistanced ultrasound sol-gel process using NH4VO3 and EDTA, NH3•H2O as raw materials. The synthesized activation energy and the influence of pH values and the calcination temperatures on the phases and microstructures of powders were particularly investigated. The precursor powders and the V2O5 powders were characterized by X-ray diffraction (XRD), fourier transform inelectron microscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry-thermal gravimetric (DSC-TG). Results show that the obtained products exhibit good crystallization under the conditions of pH=4, calcination temperature 400~500 °C and calcination time 0.5 h during the synthesizing process. The as-prepared V2O5 powders show preferred growth orientation along (001) plane at the pH=4. By DSC analysis, the ultrasonic cavitation result in the decrease in synthesized activation energy obviously than that was prepared without ultrasonic irradiation.


1995 ◽  
Vol 398 ◽  
Author(s):  
A. Tomasi ◽  
E. Galvanetto ◽  
F.C. Matacotta ◽  
P. Nozar ◽  
P. Scardi ◽  
...  

ABSTRACTA systematic study on phase formation and stabilisation in the Ba-Cu-C-O system in the temperature range 20-500°C, under various atmospheres, by traditional thermal analysis techniques, high temperature X-ray diffraction and high resolution electron microscopy, has permitted to identify and characterise the formation kinetics of a new copper containing phase isomorphic to γ-BaCO3.


Sign in / Sign up

Export Citation Format

Share Document