Doping and Alloying Trends in New Thermoelectric Materials

2001 ◽  
Vol 691 ◽  
Author(s):  
Sim Loo ◽  
Sangeeta Lal ◽  
Theodora Kyratsi ◽  
Duck-Young Chung ◽  
Kuei-Fang Hsu ◽  
...  

ABSTRACTNew thermoelectric bulk materials such as CsBi4Te6 have shown superior properties to traditional materials, however, optimal performance requires continuing investigations of doping and alloying trends. A recently modified high throughput measurement system is presented for doping and alloying investigations in several new thermoelectric materials. The modification includes a four-probe configuration for more accurate measurements while maintaining a relatively short sample preparation time. The system is fully computer controlled and provides flexible contacts to accommodate various sample dimensions. Optimal compositions are then identified for further investigations in thermoelectric prototype modules. The most promising materials will be further characterized for electrical conductivity, thermoelectric power, thermal conductivity, and Hall effect measurements as a function of temperature.

2003 ◽  
Vol 793 ◽  
Author(s):  
Jarrod Short ◽  
Sim Loo ◽  
Sangeeta Lal ◽  
Kuei Fang Hsu ◽  
Eric Quarez ◽  
...  

ABSTRACTIn the field of thermoelectrics, the figure of merit of new materials is based on the electrical conductivity, thermoelectric power, and thermal conductivity of the sample, however additional insight is gained through knowledge of the carrier concentrations and mobility in the materials. The figure of merit is commonly related to the material properties through the B factor which is directly dependent on the mobility of the carriers as well as the effective mass.To gain additional insight on the new materials of interest for thermoelectric applications, a Hall Effect system has been developed for measuring the temperature dependent carrier concentrations and mobilities. In this paper, the measurement system will be described, and recent results for several new materials will be presented.


2012 ◽  
Vol 1490 ◽  
pp. 89-95 ◽  
Author(s):  
A. Jacquot ◽  
M. Rull ◽  
A. Moure ◽  
J.F. Fernandez-Lozano ◽  
M. Martin-Gonzalez ◽  
...  

ABSTRACTWe report on the development and capabilities of two new measurement systems developed at Fraunhofer-IPM. The first measurement system is based on an extension of the Van der Pauw method and is suitable for cube-shaped samples. A mapping of the electrical conductivity tensor of a Skutterudite-SPS samples produced at the Instituto de Microelectrónica de Madrid is presented. The second measurement system is a ZTmeter also developed at the Fraunhofer-IPM. It enables the simultaneous measurement of the electrical conductivity, Seebeck coefficient and thermal conductivity up to 900 K of cubes at least 5x5x5 mm3 in size. The capacity of this measurement system for measuring the anisotropy of the transport properties of a (Bi,Sb)2Te3SPS sample produced by KTH is demonstrated by simply rotating the samples.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


2013 ◽  
Vol 743-744 ◽  
pp. 120-125
Author(s):  
Zhen Chen ◽  
Ye Mao Han ◽  
Min Zhou ◽  
Rong Jin Huang ◽  
Yuan Zhou ◽  
...  

In the present study, the glass microsphere dispersed Bi-Sb thermoelectric materials have been fabricated through mechanical alloying followed by pressureless sintering. The phase composition and the microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Electrical conductivity, Seebeck coefficient and thermal conductivity were measured in the temperature range of 77~300 K. The ZT values were calculated according to the measurement results. The results showed that the electrical conductivity, Seebeck coefficient and thermal conductivity decreased by adding glass microsphere into Bi-Sb thermoelectric materials. However, the optimum ZT value of 0.24 was obtained at 260 K, which was increased 10% than that of the Bi-Sb matrix. So it is confirmed that the thermoelectric performance of Bi-Sb-based materials can be improved by adding moderate glass microspheres.


2009 ◽  
Vol 1181 ◽  
Author(s):  
Cydale Smith ◽  
Marcus Pugh ◽  
Hervie Martin ◽  
Rufus Durel Hill ◽  
Brittany James ◽  
...  

AbstractEffective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2sσ/ KTC, σ is the electrical conductivity T/KTC, where S is the Seebeck coefficient, T is the absolute temperature and KTC is the thermal conductivity. In this study we have prepared the thermoelectric generator device of Si/Si+Ge multi-layer superlattice films using the ion beam assisted deposition (IBAD). To determine the stoichiometry of the elements of Si and Ge in the grown multilayer films and the thickness of the grown multi-layer films Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package were used. The 5 MeV Si ion bombardments were performed to make quantum clusters in the multi-layer superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity.Keywords: Ion bombardment, thermoelectric properties, multi-nanolayers, Figure of merit.


2000 ◽  
Vol 626 ◽  
Author(s):  
M. Fornari ◽  
D. J. Singh ◽  
I. I. Mazin ◽  
J. L. Feldman

ABSTRACTThe key challenges in discovering new high ZT thermoelectrics are understanding how the nearly contradictory requirements of high electrical conductivity, high thermopower and low thermal conductivity can be achieved in a single material and based on this identifying suitable compounds. First principles calculations provide a material specific microscopic window into the relevant properties and their origins. We illustrate the utility of the approach by presenting specific examples of compounds belonging to the class of skutterudites that are or are not good thermoelectrics along with the microscopic reasons. Based on our computational exploration we make a suggestion for achieving higher values of ZT at room temperature in bulk materials, namely n-type La(Ru,Rh)4Sb12 with high La-filling.


2021 ◽  
Author(s):  
◽  
Michael Ng

<p>Energy consumption worldwide is constantly increasing, bringing with it the demand for low cost, environmentally friendly and efficient energy technologies. One of these promising technologies is thermoelectrics in which electric power is harvested from waste heat energy. The efficiency of a thermoelectric device is determined by the dimensionless figure of merit ZT = σS²T/k where σ is the electrical conductivity, S is the thermopower, k is the thermal conductivity, and T is the average temperature. In this thesis we investigate the use of nanostructuring, which has been known to lead to significant reduction in the lattice thermal conductivity to maximise the figure of merit.  One of the most successful bulk thermoelectric materials is Bi₂Te₃, with a ZT of unity at room temperature. Here we investigate the effects of nanostructuring on the thermoelectric properties of Bi₂Te₃. Sub-100 nm ₂Te₃ nanoparticles were successfully synthesized and the figure of merit was found to be ZT ~ 5X10⁻⁵ at room temperature. The effect of a ligand exchange treatment to replace the long chain organic ligand on the as-synthesized nanoparticles with a short chain alkyl ligand was explored. After ligand exchange treatment with hydrazine the figure of merit of sub-100 nm Bi₂Te₃ was found to increase by two fold to ZT ~ 1X10⁻⁴ at room temperature. Overall the figure of merit is low compared to other nanostructured Bi₂Te₃, this was attributed to the extremely low electrical conductivity. The thermopower and thermal conductivity were found to be ~96 μVK⁻¹ and ~0.38 Wm⁻¹ K⁻¹ at 300 K respectively, which show improvements over other nanostructured Bi₂Te₃.  Further optimisation of the figure of merit was also investigated by incorporating Cu, Ni and Co dopants. The most successful of these attempts was Co in which 14.5% Co relative to Bi was successfully incorporated into sub-100 nm Bi₂Te₃. The figure of merit of nanostructured Bi₁.₇₁Co₀.₂₉Te₁.₇₁ alloy was found to increase by 40% to a ZT ~ 1.4X10⁻⁴ at room temperature. Although overall the figure of merit is low, the effect of Co alloying and hydrazine treatment shows potential as a route to optimise the figure of merit.  A potential novel material for thermoelectrics applications is inorganicorganic perovskite single crystals. Here we report a synthetic strategy to successfully grow large millimetre scale single crystals of MAPbBr₃₋xClx, FAPbBr₃₋xClx, and MAPb₁-xSnxBr₃ (MA = methylammonium and FA = formamidinium) using inverse temperature crystallisation (ITC) in a matter of days. This is the first reported case of mixed Br/Cl single crystals with a FA cation and mixed Pb/Sn based perovskites grown using ITC. The bandgap of these single crystals was successfully tuned by altering the halide and metal site composition. It was found that single crystals of FAPbBr₃₋xClx were prone to surface degradation with increased synthesis time. This surface degradation was observed to be reversible by placing the single crystals in an antisolvent such as chloroform.  A tentative model was proposed to analyse the IV characteristics of the single crystal perovskites in order to extract mobilities and diffusion lengths. The MAPbBr₃ and MAPbBr₂.₅Cl₀.₅ single crystal mobilities were found to be between 30-390 cm² V⁻¹ s⁻¹ and 10-100 cm² V⁻¹ s⁻¹ respectively, the diffusion lengths were found to be between 2-8 μm and 1-4 μm respectively. This is an improvement over polycrystalline thin film perovskites and comparable to other single crystal perovskites. The conductance of MAPb₁-xSnxBr₃ based perovskites was found to increase by 2 orders of magnitude even with just 1% of Sn incorporated. The thermal conductivity of MAPbBr₃ single crystals was found to be ~1.12 Wm⁻¹ K⁻¹ at room temperature which is reasonable low for single crystals, however no other thermoelectric properties could be measured due to the self cleaving nature of the single crystals with decreasing temperature and the high resistivity of the material.</p>


2015 ◽  
Vol 44 (5) ◽  
pp. 2285-2293 ◽  
Author(s):  
Jing Li ◽  
Li-Dong Zhao ◽  
Jiehe Sui ◽  
David Berardan ◽  
Wei Cai ◽  
...  

The thermoelectric properties of Na doped BaCu2Se2 were studied. The electrical conductivity of BaCu2Se2 was increased by 2 orders of magnitude through Na doping at the Ba sites, combined with a surprisingly low thermal conductivity; a ZT of 1.0 has been obtained for Ba0.925Na0.075Cu2Se2 at 773 K.


2000 ◽  
Vol 626 ◽  
Author(s):  
Nishant A. Ghelani ◽  
Sim Y. Loo ◽  
Duck-Young Chung ◽  
Sandrine Sportouch ◽  
Stephan de Nardi ◽  
...  

ABSTRACTSeveral new materials in the CsBi4Te6, A2Bi8Se13, (A = K, Rb, Cs), HoNiSb, Ba/Ge/B (B = In, Sn), and AgPbBiQ3 (Q = S, Se, Te) systems have shown promising characteristics for thermoelectric applications. New synthesis techniques are able to produce samples at much higher rates than previously possible. This has led to a persistent challenge in thermoelectric materials research of rapid and comprehensive characterization of samples. This paper presents a description of a new 4-sample transport measurement system and the related measurement techniques. Special features of the system include fully computer-controlled operation (implemented in LabView™) for simultaneous measurement of electrical conductivity, thermo-electric power, and thermal conductivity. This system has been successfully used to characterize several new thermoelectric materials (including some of the above-mentioned compounds) and reference materials exhibiting a wide range of thermal conductivities.


2009 ◽  
Vol 1181 ◽  
Author(s):  
Marcus Pugh ◽  
Rufus Durel Hill ◽  
Brittany James ◽  
Hervie Martin ◽  
Cydale Smith ◽  
...  

AbstractThe efficiency of the thermoelectric devices is limited by the properties of n- and p-type semiconductors. Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. In this study we prepared the thermoelectric generator device of SiO2/SiO2+Au multi-layer super-lattice films using the ion beam assisted deposition (IBAD). In order to determine the stoichiometry of the elements of SiO2 and Au in the grown multilayer films and the thickness of the grown multi-layer films Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package was used. The 5 MeV Si ion bombardments was performed to make quantum clusters in the multi-layer super-lattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardments we measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for different fluences.


Sign in / Sign up

Export Citation Format

Share Document