Growth and characterization of Ge nanostructures on Si(111)

2001 ◽  
Vol 696 ◽  
Author(s):  
F. Rosei ◽  
N. Motta ◽  
A. Sgarlata ◽  
A. Balzarotti

AbstractScanning Probe Microscopy (SPM) in situ is used to study the evolution of Ge islands grown by Physical Vapor Deposition on Si(111) 7×7 reconstructed surfaces. Large 3D islands form on the Wetting Layer (WL), with average lateral dimension in the range 200 - 500 nm. The statistical distribution of the island shapes has been analyzed, showing that three types of shapes coexist under certain conditions: strained, partially relaxed and ripened (atoll-like) islands. We measured the contact angles of the island facets, and observed the depletion of the substrate around the ripened islands. These features are attributed to the misfit strain, which is partially relieved by interdiffusion of Si into the Ge layers.

Author(s):  
V. C. Kannan ◽  
S. M. Merchant ◽  
R. B. Irwin ◽  
A. K. Nanda ◽  
M. Sundahl ◽  
...  

Metal silicides such as WSi2, MoSi2, TiSi2, TaSi2 and CoSi2 have received wide attention in recent years for semiconductor applications in integrated circuits. In this study, we describe the microstructures of WSix films deposited on SiO2 (oxide) and polysilicon (poly) surfaces on Si wafers afterdeposition and rapid thermal anneal (RTA) at several temperatures. The stoichiometry of WSix films was confirmed by Rutherford Backscattering Spectroscopy (RBS). A correlation between the observed microstructure and measured sheet resistance of the films was also obtained.WSix films were deposited by physical vapor deposition (PVD) using magnetron sputteringin a Varian 3180. A high purity tungsten silicide target with a Si:W ratio of 2.85 was used. Films deposited on oxide or poly substrates gave rise to a Si:W ratio of 2.65 as observed by RBS. To simulatethe thermal treatments of subsequent processing procedures, wafers with tungsten silicide films were subjected to RTA (AG Associates Heatpulse 4108) in a N2 ambient for 60 seconds at temperatures ranging from 700° to 1000°C.


1993 ◽  
Vol 318 ◽  
Author(s):  
James D. Kiely ◽  
Dawn A. Bonnell

ABSTRACTScanning Tunneling and Atomic Force Microscopy were used to characterize the topography of fractured Au /sapphire interfaces. Variance analysis which quantifies surface morphology was developed and applied to the characterization of the metal fracture surface of the metal/ceramic system. Fracture surface features related to plasticity were quantified and correlated to the fracture energy and energy release rate.


Sign in / Sign up

Export Citation Format

Share Document