A Percolation Equation for Modeling Experimental Results for Continuum Percolation Systems

2001 ◽  
Vol 699 ◽  
Author(s):  
D.S. McLachlan ◽  
C. Chiteme ◽  
W.D. Heiss ◽  
Junjie Wu

AbstractThe standard percolation equations or power laws, for dc and ac conductivity (dielectric constant) are based on scaling ansatz, and predict the behaviour of the first and second order terms, above and below the percolation or critical volume fraction (øc), and in the crossoverregion. Recent experimental results on ac conductivity are presented, which show that these equations, with the exception of real σm above øc and the first order terms in the crossover region, are only valid in the limit σi/σc = 0, where for an ideal dielectric σi=ωε0εr.A single analytical equation, which has the same parameters as the standard percolation equations, and which, for ac conductivity, reduces to the standard percolation power laws in the limit σi(ωε0εr)/σc = 0 for all but one case, is presented. The exception is the expression for real σm below øc, where the standard power law is always incorrect. The equation is then shown to quantitatively fit both first and second order dc and ac experimental data over the entire frequency and composition range. This phenomenological equation is also continuous, has the scaling properties required at a second order metal-insulator and fits scaled first order dc and ac experimental data. Unfortunately, the s and t exponents that are necessary to fit the data to the above analytical equation are usually not the simple dimensionally determined universal ones and depend on a number of factors.

Author(s):  
Tarald O. Kvålseth

First- and second-order linear models of mean movement time for serial arm movements aimed at a target and subject to preview constraints and lateral constraints were formulated as extensions of the so-called Fitts's law of motor control. These models were validated on the basis of experimental data from five subjects and found to explain from 80% to 85% of the variation in movement time in the case of the first-order models and from 93% to 95% of such variation for the second-order models. Fitts's index of difficulty (ID) was generally found to contribute more to the movement time than did either the preview ID or the lateral ID defined. Of the different types of errors, target overshoots occurred far more frequently than undershoots.


2021 ◽  
Author(s):  
khaled Mostafa ◽  
H. Ameen ◽  
A. Ebessy ◽  
A. El-Sanabary

Abstract Our recently tailored and fully characterized poly (AN)-starch nanoparticle graft copolymer having 60.1 G.Y. % was used as a starting substrate for copper ions removal from waste water effluent after chemical modification with hydroxyl amine via oximation reaction. This was done to change the abundant nitrile groups in the above copolymer into amidoxime one and the resultant poly (amidoxime) resin was used as adsorbent for copper ions. The resin was characterized qualitatively via rapid vanadium ion test and instrumentally by FT-IR spectra and SEM morphological analysis to confirm the presence of amidoxime groups. The adsorption capacity of the resin was done using the batch technique, whereas the residual copper ions content in the filtrate before and after adsorption was measured using atomic adsorption spectrometry. It was found that the maximum adsorption capacity of poly (amidoxime) resin was 115.2 mg/g at pH 7, 400ppm copper ions concentration and 0.25 g adsorbent at room temperature. The adsorption, kinetics and isothermal study of the process is scrutinized using different variables, such as pH, contact time, copper ion concentration and adsorbent dosage. Different kinetics models comprising the pseudo-first-order and pseudo-second-order have been applied to the experimental data to envisage the adsorption kinetics. It was found from kinetic study that pseudo-second-order rate equation was better than pseudo-first-order supporting the formation of chemisorption process. While, in case of isothermal study, the examination of calculated correlation coefficient (R2) values showed that the Langmuir model provide the best fit to experimental data than Freundlich one.


1996 ◽  
Vol 74 (3-4) ◽  
pp. 155-158
Author(s):  
K. Hussein

We use a perturbative model based on a partition of the configuration space into four regions to calculate the Coulomb energy including charge-overlap effects (induction and dispersion terms) for the interaction between two atoms Rb(5s2S) and Cs(6s2S). Results for first-order electrostatic as well as second-order induction and dispersion energies will be presented in the range 13 < R < 25 a.u. The damping functions for the various dispersion terms varying as R−6, R−8, and R−10 in the range of large R have also been determined, and fitted analytical forms will be displayed for these terms. From comparison with accurate experimental results, the present method is seen to be valid for values of R beyond 7 Å (1 Å = 10−10 m).


Author(s):  
Yufei Chen ◽  
Changbao Jiang ◽  
Juliana Y. Leung ◽  
Andrew K. Wojtanowicz ◽  
Dongming Zhang ◽  
...  

Abstract Shale is an extremely tight and fine-grained sedimentary rock with nanometer-scale pore sizes. The nanopore structure within a shale system contributes not only to the low to ultra-low permeability coefficients (10−18 to 10−22 m2), but also to the significant gas slippage effect. The Klinkenberg equation, a first-order correlation, offers a satisfying solution to describe this particular phenomenon for decades. However, in recent years, several scholars and engineers have found that the linear relation from the Klinkenberg equation is invalid for most gas shale reservoirs, and a need for a second-order model is, therefore, proceeding apace. In this regard, the purpose of this study was to develop a second-order approach with experimental verifications. The study involved a derivation of a second-order correlation of the Klinkenberg-corrected permeability, followed by experimental verifications on a cubic shale sample sourced from the Sichuan Basin in southwestern China. We utilized a newly developed multi-functional true triaxial geophysical (TTG) apparatus to carry out permeability measurements with the steady-state method in the presence of heterogeneous stresses. Also discussed were the effects of two gas slippage factors, Klinkenberg-corrected permeability, and heterogeneous stress. Finally, based on the second-order slip theory, we analyzed the deviation of permeability from Darcy flux. The results showed that the apparent permeability increased more rapidly as the pore pressure declined when the pore pressures are relatively low, which is a strong evidence of the gas slippage effect. The second-order model could reasonably match the experimental data, resulting in a lower Klinkenberg-corrected permeability compared with that from the linear Klinkenberg equation. That is, the second-order approach improves the intrinsic permeability estimation of gas shales with the result being closer to the liquid permeability compared with the Klinkenberg approach. Analysis of the experimental data reported that both the first-order slippage factor A and the second-order slippage factor B increased with increasing stress heterogeneity, and that A was likely to be more sensitive to stress heterogeneity compared with B. Interestingly, both A and B first slightly increased and then significantly as the permeability declined. It is recommended that when the shale permeability is below 10−18 m2, the second-order approach should be taken into account. Darcy’s law starts to deviate when Kn &gt; 0.01 and is invalid at high Knudsen numbers. The second-order approach seems to alleviate the problem of overestimation compared with the Klinkenberg approach and is more accurate in permeability evolution.


2013 ◽  
Vol 803 ◽  
pp. 157-160
Author(s):  
Zhen Zhen Kong ◽  
Dong Mei Jia ◽  
Su Wen Cui

The composite weakly basic resin (D301Fe) was prepared and examined using scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption kinetics of glyphosate from aqueous solution onto composite weakly basic resin (D301Fe) were investigated under different conditions. The experimental data was analyzed using various adsorption kinetic models like pseudo-first order, the pseudo-second order, the Elovich and the parabolic diffusion models to determine the best-fit equation for the adsorption of glyphosate onto D301Fe. The results show that the pseudo-second order equation fitted the experimental data well and its adsorption was chemisorption-controlled.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450046 ◽  
Author(s):  
A. D. Salman ◽  
N. Al-Dahan ◽  
F. I. Sharrad ◽  
I. Hossain

Inelastic electron scattering form factors for 29 Si nucleus with total angular momentum and positive parity (Jπ) and excited energy (3/2+, 1.273 MeV; 5/2+, 2.028 MeV; 3/2+, 2.425 MeV and 7/2+, 4.079 MeV) have been calculated using higher energy configurations outside the sd-shell. The calculations of inelastic form factors up to the first- and second-order with and without core-polarization (CP) effects were compared with the available experimental data. The calculations of inelastic electron scattering form factors up to the first-order with CP effects are in agreement with the experimental data, excepted for states 3/2+(1.273 MeV) and 5/2+(2.028 MeV) and without this effect are failed for all states. Furthermore, the calculations of inelastic electron scattering form factors up to the second-order with CP effects are in agreement with the experimental data for 3/2+(1.273 MeV) and 5/2+(2.028 MeV).


Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 542 ◽  
Author(s):  
Vladimir A. Belyakov ◽  
Sergei V. Semenov

Most studies of the localized edge (EM) and defect (DM) modes in cholesteric liquid crystals (CLC) are related to the localized modes in a collinear geometry, i.e., for the case of light propagation along the spiral axis. It is due to the fact that all photonic effects in CLC are most pronounced just for a collinear geometry, and also partially due to the fact that a simple exact analytic solution of the Maxwell equations is known for a collinear geometry, whereas for a non-collinear geometry, there is no exact analytic solution of the Maxwell equations and a theoretical description of the experimental data becomes more complicated. It is why in papers related to the localized modes in CLC for a non-collinear geometry and observing phenomena similar to the case of a collinear geometry, their interpretation is not so clear. Recently, an analytical theory of the conical modes (CEM) related to a first order of light diffraction was developed in the framework of the two-wave dynamic diffraction theory approximation ensuring the results accuracy of order of δ, the CLC dielectric anisotropy. The corresponding experimental results are reasonably well described by this theory, however, some numerical problems related to the CEM polarization properties remain. In the present paper, an analytical theory of a second order diffraction CEM is presented with results that are qualitatively similar to the results for a first order diffraction order CEM and have the accuracy of order of δ2, i.e., practically exact. In particular, second order diffraction CEM polarization properties are related to the linear σ and π polarizations. The known experimental results on the CEM are discussed and optimal conditions for the second order diffraction CEM observations are formulated.


Fractals ◽  
2005 ◽  
Vol 13 (04) ◽  
pp. 253-263 ◽  
Author(s):  
A. MUÑOZ-DIOSDADO ◽  
L. GUZMÁN-VARGAS ◽  
A. RAMÍREZ-ROJAS ◽  
J. L. DEL RÍO-CORREA ◽  
F. ANGULO-BROWN

Fractal time series with scaling properties expressed through power laws appear in many contexts. These properties are very important from several viewpoints. For instance, they reveal the nature of the correlations present in the fractal signals. It is common that the scaling properties characterized by means of invariant quantities suffer changes along with the dynamical evolution of the studied systems. One of these changes is a crossover in the scaling properties reflecting an important change in the system dynamical behavior. In this article, we present two cases of crossover behavior corresponding to interbeat and electroseismic time series, we observe the crossovers in time series of experimental data and their corresponding simulation with simple models. We suggest a possible explanation of the observed crossovers in terms of the models considered.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Yuchuan Liu ◽  
Q. Jane Wang ◽  
Dong Zhu ◽  
Wenzhong Wang ◽  
Yuanzhong Hu

This paper discussed the computational accuracy of rough-surface point-contact isothermal elastohydrodynamic lubrication (EHL) analysis by investigating the effects of differential scheme, viscosity-pressure, and shear-thinning models. An EHL experiment with multitransverse ridges was employed as simulated target. Four differential schemes, including the combined and the separate first-order and second-order backward schemes, were investigated. It is found that the separate second-order backward scheme offers the best results based on the comparison with the experimental data, with which two roughness derivatives may be fully or partially canceled each other; thus, the discretization error induced by roughness can be reduced. The consistency of differential schemes is an important issue for the separate schemes. The Yasutomi free-volume viscosity-pressure model and the Eyring rheological model are found to yield the numerical simulations the closest to experimental results.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3516
Author(s):  
Changlang Wu ◽  
Truong Tho Do ◽  
Phuong Tran

This paper proposes a design of novel composite materials inspired by the Peano curve and manufactured using PolyJet 3D printing technology with Agilus30 (flexible phase) and VeroMagentaV (rigid phase) materials. Mechanical properties were evaluated through tensile and compression tests. The general rule of mixture (ROM) for composites was employed to approximate the tensile properties of the hybrid materials and compare them to the experimental results. The effect of reinforcement alignments and different hierarchies are discussed. The results indicated that the 5% inclusion of the Peano reinforcement in tensile samples contributed to the improvement in the elastic modulus by up to 6 MPa, but provided no obvious enhancement in ultimate tensile strength. Additionally, compressive strengths between 2 MPa and 6 MPa were observed for compression cubes with first-order reinforcement, while lower values around 2 MPa were found for samples with second-order reinforcement. That is to say, the first-order reinforcement has been demonstrated more effectively than the second-order reinforcement, given the same reinforcement volume fraction of 10% in compression cubes. Different second-order designs exhibited slightly different mechanical properties based on the ratio of reinforcement parallel to the loading direction.


Sign in / Sign up

Export Citation Format

Share Document