Electrical Signature of Ion-Implantation Induced Defects in n-Silicon in the Defect Cluster Regime Studied using DLTS and Isothermal Transient Spectroscopies

2002 ◽  
Vol 719 ◽  
Author(s):  
Samarendra P. Singh ◽  
Vineet Rao ◽  
Y. N. Mohapatra ◽  
Sanjay Rangan ◽  
S. Ashok

AbstractWe study electrical signature of defect clusters in KeV Ar ion-implanted n-silicon using Deep Level Transient Spectroscopy (DLTS) and isothermal capacitance spectroscopies such as time analyzed transient spectroscopy (TATS) and high resolution Laplace-DLTS. The samples are annealed at relatively low temperatures of 350 °C - 600 °C at which defect clusters are known to form and evolve. Contrary to the view that few dominant point-defect like traps are associated with defect clusters, our results show that the band gap may be replete with bands of multiple trap states; however their occupation and hence observation depends on experimental conditions dictated by dynamics of carrier capture and emission at these traps. Charge redistribution among multiple states and deepening of effective emission energy with capture are shown to be commonly occurring at these defects. Isothermal transient spectroscopy is shown to be appropriate tool for recognition of some of these features.

Author(s):  
М.М. Соболев ◽  
Ф.Ю. Солдатенков

The results of experimental studies of capacitance– voltage characteristics, spectra of deep-level transient spectroscopy of graded high-voltage GaAs p+−p0−i−n0 diodes fabricated by liquid-phase epitaxy at a crystallization temperature of 900C from one solution–melt due to autodoping with background impurities, in a hydrogen or argon ambient, before and after irradiation with neutrons. After neutron irradiation, deep-level transient spectroscopy spectra revealed wide zones of defect clusters with acceptor-like negatively charged traps in the n0-layer, which arise as a result of electron emission from states located above the middle of the band gap. It was found that the differences in capacitance–voltage characteristics of the structures grown in hydrogen or argon ambient after irradiation are due to different doses of irradiation of GaAs p+−p0−i−n0 structures and different degrees of compensation of shallow donor impurities by deep traps in the layers.


2020 ◽  
Vol 153 (12) ◽  
pp. 124703
Author(s):  
Weitao Lian ◽  
Rongfeng Tang ◽  
Yuyuan Ma ◽  
Chunyan Wu ◽  
Chao Chen ◽  
...  

1982 ◽  
Vol 14 ◽  
Author(s):  
P. H. Campbell ◽  
O. Aina ◽  
B. J. Baliga ◽  
R. Ehle

ABSTRACTHigh temperature annealing of Si 3 N4 and SiO2 capped high purity LPE GaAs is shown to result in a reduction in the surface carrier concentration by about an order of magnitude. Au Schottky contacts made on the annealed samples were found to have severely degraded breakdown characteristics. Using deep level transient spectroscopy, deep levels at EC–.58eV, EC–.785eV were detected in the SiO2, capped samples and EC–.62eV, EC–.728eV in the Si3N4 capped Samples while none was detected in the unannealed samples.The electrical degradations are explained in terms of compensation mechanisns and depletion layer recombination-generation currents due to the deep levels.


1993 ◽  
Vol 316 ◽  
Author(s):  
J. Ravi ◽  
Yu. Erokhin ◽  
S. Koveshnikov ◽  
G.A. Rozgonyi ◽  
C.W. White

ABSTRACTThe influence of in-situ electronic perturbations on defect generation during 150 keV proton implantation into biased silicon p-n junctions has been investigated. The concentration and spatial distribution of the deep traps were characterized using a modification of the double corelation deep level transient spectroscopy technique (D-DLTS). With the in-situ electric field applied, a decrease in concentration of vacancy-related, as well as H-related, traps was observed. 500 keV He+ implantation was also performed to supplement the above studies and to differentiate any passivation effects due to hydrogen. A model based on the charge states of hydrogen and vacancies was used to explain the observed behaviour.


2002 ◽  
Vol 389-393 ◽  
pp. 489-492 ◽  
Author(s):  
Atsuo Kawasuso ◽  
Michael Weidner ◽  
F. Redmann ◽  
Thomas Frank ◽  
Reinhard Krause-Rehberg ◽  
...  

1981 ◽  
Vol 4 ◽  
Author(s):  
A. Chantre ◽  
M. Kechouane ◽  
D. Bois

ABSTRACTDeep Level Transient Spectroscopy has been used to investigate cw laser induced defects in virgin silicon. Two main regimes have been found. In the solid phase regime, two well defined deep levels at Ec−0.19 eV and Ec−0.45 eV are observed. This point defect introduction is proposed to be involved in the degradation of ion-implanted cw laser annealed junctions. The mechanism leading to point defects generation is likely to involve trapping of in–diffused vacancies, quenched–in from the high temperature state. In the slip lines or melt regimes, additionnal deep levels are detected, which are ascribed to dislocations.


Sign in / Sign up

Export Citation Format

Share Document