New DSPEG Approach to Improvement of SOS Using Low Dose Self-Implantations

1986 ◽  
Vol 74 ◽  
Author(s):  
Eliezer Dovid Richmond ◽  
Alvin R. Knudson ◽  
H. Kawayoshi

AbstractA new approach is proposed for the material improvement of silicon-on-sapphire (SOS). This approach utilizes the phenomena that the defect elimination throughout the silicon layer depends on both the deep and shallow self-implantations of the double solid phase epitaxial growth (DSPEG) technique for SOS material improvement. The new aspects of this approach are that the deep implantation does not form an amorphous layer, and therefore the ion damage to the substrate is minimized eliminating Al autodoping of the silicon layer.

1999 ◽  
Vol 580 ◽  
Author(s):  
Bing-Zong Li ◽  
Xin-Ping Qu ◽  
Guo-Ping Ru ◽  
Ning Wang ◽  
Paul Chu

AbstractA multilayer structure of Co/a-Si/Ti/Si(100) together with Co/Ti/Si(100) is applied to investigate the process and mechanism of CoSi2 epitaxial growth on a Si(100) substrate. The experimental results show that by adding an amorphous Si layer with a certain thickness, the epitaxial quality of CoSi2 is significantly improved. A multi-element amorphous layer is formed by a solid state amorphization reaction at the initial stage of the multilayer reaction. This layer acts as a diffusion barrier, which controls the atomic interdiffusion of Co and Si and limits the supply of Co atoms. It has a vital effect on the multilayer reaction kinetics, and the epitaxial growth of CoSi2 on Si. The kinetics of the CoSi2 growth process from multilayer reactions is investigated.


2015 ◽  
Vol 245 ◽  
pp. 72-79
Author(s):  
Dmitry L. Goroshko ◽  
Alexander V. Shevlyagin ◽  
Konstantin Nikolaevich Galkin ◽  
Igor M. Chernev ◽  
Evgeniy A. Chusovitin ◽  
...  

Formation of GaSb by means of solid phase epitaxy of amorphous Ga:Sb (1:1) layer on Si (001) substrate at 500 °C has been studied. At amorphous layer thickness of 16 nm, a continuous nanocrystalline layer of GaSb was formed. Decreasing of amorphous layer thickness up to 0.8 nm resulted in formation of separated GaSb nanocrystallites (NCs), which had a mean lateral size of 30–80 nm and mean height of 2–3 nm, while their concentration reached 3×109 cm-2. Atomic force microscopy and low energy electron diffraction data showed that GaSb NCs could be fully embedded into silicon lattice by deposition of 25-nm-thick silicon layer at 650 °C. Nevertheless, on a surface of the silicon layer, some holes have been formed because of NCs moving toward to the surface. The holes formation can be almost completely suppressed by deposition of additional 25-nm-thick silicon layer at 500 °C – so-called “stop-layer”.


1998 ◽  
Vol 523 ◽  
Author(s):  
K. B. Belay ◽  
D. J. Llewellyn ◽  
M. C. Ridgway

AbstractIn-situ transmission electron microscopy (TEM) has been utilized in conjunction with conventional ex-situ Rutherford backscattering spectrometry and channeling (RBS/C), in-situ time resolved reflectivity (TRR) and ex-situ TEM to study the influence of substrate orientation on the solid-phase epitaxial growth (SPEG) of amorphised GaAs. A thin amorphous layer was produced on semi-insulating (100), (110) and (111) GaAs substrates by ion implantation of 190 and 200 keV Ga and As ions, respectively, to a total dose of 1e14/cm2. During implantation, substrates were maintained at liquid nitrogen temperature. In-situ annealing at ∼260°C was performed in the electron microscope and the data obtained was quantitatively analysed. It has been demonstrated that the non-planarity of the crystalline-amorphous (c/a)-interface was greatest for the (111) substrate orientation and least for the (110) substrate orientation. The roughness was measured in terms of the length of the a/c-interface in given window as a function of depth on a frame captured from the recorded video of the in-situ TEM experiments. The roughness of the c/a-interface was determined by the size of the angle subtended by the microtwins with respect to the interface on ex-situ TEM cross-sectional micrographs. The angle was both calculated and measured and was the largest in the case of (111) plane. The twinned fraction as a function of orientation, was calculated in terms of the disorder measured from the RBS/C and it was greatest for the (111) orientation.


1993 ◽  
Vol 319 ◽  
Author(s):  
T.K. Chaki

AbstractA model of solid-phase epitaxial growth (SPEG), explaining enhancing effects of ion-irradiation and dopants, is presented. The crystallization is by the adjustment of atomic positions in the amorphous side of the crystalline/amorphous (c-a) interface due to self-diffusion in the amorphous solid, assisted by a freeenergy decrease associated with the transformation from the amorphous (a) to crystalline (c) phase. Irradiation and electrically active dopants increase the selfdiffusivity of a-phase by generating point defects in the amorphous layer and thus enhance crystallization. An expression for the velocity of epitaxial growth is derived. The low activation energy of ion-induced SPEG is due to recombination of point defects in the a-phase.


1988 ◽  
Vol 128 ◽  
Author(s):  
K. S. Jones ◽  
D. Venables ◽  
C. R. Horne

ABSTRACTImplantations of annealed SIMOX and Si wafers have been done using P and Ga to investigate the effect of excess oxygen and oxygen precipitates on amorphous layer regrowth and category II (end-of-range) dislocation loop elimination. Solid phase epitaxial regrowth of the amorphous silicon in both SIMOX and Si control wafers occurred at 550°C without the formation of category III defects and annealing at 900°C 16 hours resulted in complete removal of the category II defects. In an oxidizing ambient, the implanted SIMOX wafer again exhibited complete defect elimination whereas the Si control wafer showed growth and development of extrinsic stacking faults. It is speculated that the buried oxide may act as a sink for the Si. SIMS results indicate the dopant getters to the Si/SiO2 interfaces and that redistribution can be modelled reasonably well with SUPREME III.


1993 ◽  
Vol 8 (4) ◽  
pp. 820-829 ◽  
Author(s):  
J.S. Custer ◽  
Michael O. Thompson ◽  
D.J. Eaglesham ◽  
D.C. Jacobson ◽  
J.M. Poate

The competition between solid phase epitaxy and random nucleation in amorphous Si implanted with Cu and Ag has been studied. At low metal concentrations, solid phase epitaxy proceeds with slight deviations from the intrinsic rate, with the impurity segregated and evenly distributed in the amorphous layer. At an impurity concentration of 0.12 at.%, rapid nucleation occurs, transforming the remaining layer into polycrystalline Si. The nucleation rate is ≥108 the intrinsic homogeneous rate. The effects of the metals on epitaxy scale with the amount of metal–Si interaction. Nucleation appears to occur when the metal impurities exceed their absolute solubility limit and begin to phase separate.


2018 ◽  
Vol 10 (48) ◽  
pp. 41487-41496 ◽  
Author(s):  
Jeonghwan Jang ◽  
Seung-Yong Lee ◽  
Hwanyeol Park ◽  
Sangmoon Yoon ◽  
Gyeong-Su Park ◽  
...  

1995 ◽  
Vol 402 ◽  
Author(s):  
G. Curello ◽  
R. Gwilliam ◽  
M. Harry ◽  
R. J. Wilson ◽  
B. J. Sealy ◽  
...  

AbstractIn this work iridium silicidation of high dose Ge+ implanted Si layers has been studied. Compositional graded SiGe layers with a Ge peak concentration between 6 at.% and 12 at.% have been fabricated using 200 keV Ge+ ion implantation into (100) Si. A 20 nm thick Ir film was then deposited by e-beam evaporation with thermal reaction being performed to both regrow the implantation damage and form the silicide. The crystal quality of the SiGe layer and its interaction with the Ir film have been studied by cross-sectional Transmission Electron Microscopy (XTEM) and Rutherford Backscattering Spectrometry (RBS).Solid Phase Epitaxial Growth (SPEG) in the low dose case has produced a defect free SiGe layer with the formation of the IrSi phase. The annealing ambient was found to be critical for the silicidation. For the high dose case, as expected, strain relaxation related defects were observed to nucleate at a depth close to the projected range of the Ge+ implant and to extend up to the surface. A second rapid thermal annealing at higher temperatures, performed in forming gas, consumed most of the defective layer moving the silicide interface closer to the peak of the Ge distribution. A second low dose Ge+ implant following the metal deposition has been found to have a beneficial effect on the quality of the final interface. An amorphizing 500 keV Si+ implant followed by SPEG has finally been used to move the end of range defects far from the interface.


Sign in / Sign up

Export Citation Format

Share Document