Ion Impiantation Doping of Siox with 31P and 69Ga

1988 ◽  
Vol 128 ◽  
Author(s):  
K. S. Jones ◽  
D. Venables ◽  
C. R. Horne

ABSTRACTImplantations of annealed SIMOX and Si wafers have been done using P and Ga to investigate the effect of excess oxygen and oxygen precipitates on amorphous layer regrowth and category II (end-of-range) dislocation loop elimination. Solid phase epitaxial regrowth of the amorphous silicon in both SIMOX and Si control wafers occurred at 550°C without the formation of category III defects and annealing at 900°C 16 hours resulted in complete removal of the category II defects. In an oxidizing ambient, the implanted SIMOX wafer again exhibited complete defect elimination whereas the Si control wafer showed growth and development of extrinsic stacking faults. It is speculated that the buried oxide may act as a sink for the Si. SIMS results indicate the dopant getters to the Si/SiO2 interfaces and that redistribution can be modelled reasonably well with SUPREME III.

1986 ◽  
Vol 74 ◽  
Author(s):  
Eliezer Dovid Richmond ◽  
Alvin R. Knudson ◽  
H. Kawayoshi

AbstractA new approach is proposed for the material improvement of silicon-on-sapphire (SOS). This approach utilizes the phenomena that the defect elimination throughout the silicon layer depends on both the deep and shallow self-implantations of the double solid phase epitaxial growth (DSPEG) technique for SOS material improvement. The new aspects of this approach are that the deep implantation does not form an amorphous layer, and therefore the ion damage to the substrate is minimized eliminating Al autodoping of the silicon layer.


1988 ◽  
Vol 100 ◽  
Author(s):  
D. B. Poker ◽  
D. K. Thomas

ABSTRACTIon implantation of Ti into LINbO3 has been shown to be an effective means of producing optical waveguides, while maintaining better control over the resulting concentration profile of the dopant than can be achieved by in-diffusion. While undoped, amorphous LiNbO3 can be regrown by solid-phase epitaxy at 400°C with a regrowth velocity of 250 Å/min, the higher concentrations of Ti required to form a waveguide (∼10%) slow the regrowth considerably, so that temperatures approaching 800°C are used. Complete removal of residual damage requires annealing temperatures of 1000°C, not significantly lower than those used with in-diffusion. Solid phase epitaxy of Agimplanted LiNbO3, however, occurs at much lower temperatures. The regrowth is completed at 400°C, and annealing of all residual damage occurs at or below 800°C. Furthermore, the regrowth rate is independent of Ag concentration up to the highest dose implanted to date, 1 × 1017 Ag/cm2. The usefulness of Ag implantation for the formation of optical waveguides is limited, however, by the higher mobility of Ag at the annealing temperature, compared to Ti.


1991 ◽  
Vol 237 ◽  
Author(s):  
T. K. Chaki

ABSTRACTEnhancement of solid-phase epitaxial growth (SPEG) due to hydrostatic pressures and bending stresses is explained by stress-enhanced mobility of point defects in the amorphous solid. The crystallization is by the adjustment of atomic positions in the vicinity of the crystallization/amorphous (c-a) interface due to self-diffusion in the amorphous phase, assisted by a free energy decrease equal to the difference in free energies between the amorphous and crystalline phases. Due to a mismatch in the bulk moduli between the amorphous and crystalline phases, the application of a hydrostatic pressure can develop tensile stresses in the amorphous layer near the c-a interface. Non-hydrostatic stresses in the amorphous layer enhance the mobility of point defects in the amorphous layer and, therefore, an enhancement of the SPEG rate. In the cases of both hydrostatic pressure and bending, the enhancement occurs in the tensile side, indicating that vacancy-like mechanism is predominant in SPEG.


2004 ◽  
Vol 810 ◽  
Author(s):  
Nina Burbure ◽  
Kevin S. Jones

ABSTRACTPattern induced defects during advanced CMOS processing can lead to lower quality devices with high leakage currents. Within this study, the effects of oxide trenches on implant related defect formation and evolution in silicon patterned wafers is examined. Oxide filled trenches approximately 4000Å deep were patterned into 300 mm <100> silicon wafers. Patterning was followed by ion implantation of Si+ at energies ranging from 10 to 80 keV. Samples were amorphized with doses of 1×1015 atoms/cm2, 5×1015 atoms/cm2, and 1×1016 atoms/cm2. Two independent repeating structures were studied. The first structure is comprised of silicon oxide filled trench lines, 3.7μm wide spaced 12.5μm apart, while the second structure contains silicon squares, 0.6μm on a side, surrounded by a silicon oxide filled trench. Cross- sectional and planar view transmission electron microscopy (TEM) samples were used to examine the defect morphology after annealing at temperatures ranging from 700°C to 950°C and at times between 1 second and 1 minute. Following complete regrowth, an array of defects was observed to form near the surface at the silicon/silicon oxide interface. These trench edge defects appeared to nucleate at the amorphous-crystalline interface for all energies and doses studied. Upon a spike anneal at 700°C, it was observed that regrowth of the amorphous layer had completed except in the region near the trench edge. Thus, it is believed that this defect results from the pinning of the amorphous-crystalline interface along the trench edge during solid phase epitaxial regrowth (SPER).


1990 ◽  
Vol 205 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate ◽  
C. Kirschbaum

AbstractThis paper discusses the intrusion of H into a-Si layers during solid phase epitaxy and the effect of this H on the growth kinetics. We show that during annealing in the presence of water vapor, H is continuously generated at the oxidizing a-Si surface and diffuses into the amorphous layer, where it causes a reduction in the epitaxial growth rate. The measured variation of growth rate with the depth of the amorphous/crystal interface is correlated with the concentration of H at the interface. The diffusion coefficient for H in a-Si is determined by comparing measured depth profiles with calculated values. Hydrogen intrusion is observed even in layers annealed in vacuum and in inert gas ambients. Thin (<;5000 Åthick) a-Si layers are especially susceptible to this effect, but we show that in spite of the presence of H the activation energy for SPE derived earlier from thin-layer data is in good agreement with the intrinsic value obtained from thick, hydrogen-free layers.


2001 ◽  
Vol 89 (3) ◽  
pp. 1986 ◽  
Author(s):  
Masataka Satoh ◽  
Yuuki Nakaike ◽  
Tomonori Nakamura

1995 ◽  
Vol 378 ◽  
Author(s):  
G. C. M. Silvestre ◽  
R. A. Moore ◽  
B. J. Kennedy

AbstractTo produce Silicon-On-Insulator (SOI) materials with thin Si overlayer, sacrificial oxidation is often used. This creates defects which have adverse effects on device performance. It has been observed that Stacking Faults (SFs) in thin Separation-by-IMplantation-of-OXygen (SIMOX) or Bonded-and-Etched-back-SOI (BESOI) films of less than 600 Å, do not shrink as expected during neutral Ar anneals. Shrinkage of SFs in standard bulk substrates with different capping layers has been investigated to promote the understanding of the Si/Si02 interface effects on Si interstitial incorporation during anneals. The activation energy for growth and shrinkage of SOI samples thicker than 800 A was found to be the same as bulk Si: 2.3 eV (growth) and 4.6 eV (shrinkage). Bulk silicon implanted with low doses of oxygen, permitted investigation of the nucleation sites of SFs in SIMOX where oxygen precipitates are believed to act as nuclei for SFs. A five step etch procedure was modified to reveal the defects in very thin SOI and an automatic defect counting system developed at T.C.D. permitted fast and reliable measurements of size and density of the defects. It appears that the two Frank partial dislocations that bound SFs, are pinned at the two Si/Si02 interfaces for both SIMOX and BESOI films thinner than 500 Å. In thicker SOI, the mechanisms for growth and shrinkage of SFs are the same as for bulk silicon.


1989 ◽  
Vol 4 (6) ◽  
pp. 1473-1479 ◽  
Author(s):  
H. D. Geiler ◽  
M. Wagner ◽  
E. Glaser ◽  
G. Andrä ◽  
D. Wolff ◽  
...  

Using the double pulse technique with two synchronized lasers, we studied the conditions of ignition and evolution of explosive crystallization. The structure of the resulting crystallized layers is analyzed by TEM. Results of calculations are reported describing the development of the two phase fronts: amorphous/molten and molten/crystalline. It is shown that the system takes more than 500 ns to reach the steady state. The experimental results support the model of creating first a melt nucleus in the amorphous layer followed by the formation of the crystalline nucleus in the molten sphere. Competitive solid phase nucleation and growth in the amorphous layer limit the temperature-time interval of melt nucleation. Defined explosively crystallized areas in laterally structured SOI layers are presented.


1987 ◽  
Vol 93 ◽  
Author(s):  
D. B. Poker

ABSTRACTThe implantation of Ti into LiNbO3 has been studied as a means of altering the optical index of refraction to produce optical waveguides. Implanting 2 × 1017 atoms/cm2 of 360-keV Ti at liquid nitrogen temperature produces a highly damaged region extending to a depth of about 4000 Å. Solid-phase epitaxial regrowth of the LiNbO3 can be achieved by annealing in a water-saturated oxygen atmosphere at 400°C, though complete removal of the residual damage usually requires temperatures in excess of 800°C. The solid-phase epitaxial regrowth rate exhibits an activation energy of 2 eV at doses below 3 × 1016 Ti/cm2, but both the regrowth rate and activation energy decrease at higher doses. At doses above 1 × 1017 Ti/cm2, the solid-phase epitaxial regrowth occurs only at temperatures above 800°C.


1990 ◽  
Vol 205 ◽  
Author(s):  
J. S. Custer ◽  
Michael O. Thompson ◽  
D. J. Eaglesham ◽  
D. C. Jacobson ◽  
J. M. Poate ◽  
...  

AbstractThe competition between solid phase epitaxy and random nucleation during thermal annealing of amorphous Si implanted with the fast diffusers Cu and Ag has been studied. For low concentrations of these impurities, solid phase epitaxy proceeds with small deviations from the intrinsic rate and with the impurity remaining in the shrinking amorphous layer. At a critical metal concentration in the amorphous layer of ∼ 0.12 at.% rapid random nucleation occurs, halting epitaxy and transforming the remaining amorphous material to polycrystalline Si via grain growth. The nucleation rate is at least 8 orders of magnitude greater than the intrinsic homogeneous rate. At higher Cu concentrations nucleation is observed below the temperature needed for epitaxy (400°C). This nucleation, clearly caused by the presence of Cu or Ag in the layer, may be induced by the impurities exceeding the absolute stability concentration and starting to phase separate, leading to enhanced crystal Si nucleation in the metal rich regions.


Sign in / Sign up

Export Citation Format

Share Document