In as a Surfactant for the Growth of AlGaN/GaN Heterostructures by Plasma Assisted MBE

2002 ◽  
Vol 743 ◽  
Author(s):  
E. Monroy ◽  
N. Gogneau ◽  
E. Bellet-Amalnc ◽  
F. Enjalbert ◽  
J. Barjon ◽  
...  

ABSTRACTIn this paper, we study the surfactant capability of In for the growth of AlGaN/GaN heterostructures by plasma-assisted molecular beam epitaxy. Growth conditions were determined to have a self-regulated 1×1 In adlayer on AlxGa1-xN (0001). The presence of this In film favors two dimensional growth of AlGaN under stoichiometric conditions, and inhibits the formation of metal droplets on the surface. The quality of these layers was assessed by high resolution X-ray diffraction, atomic force microscopy and photoluminescence.

1999 ◽  
Vol 572 ◽  
Author(s):  
Stefan Zollner ◽  
Atul Konkar ◽  
R. B. Gregory ◽  
S. R. Wilson ◽  
S. A. Nikishin ◽  
...  

ABSTRACTWe measured the ellipsometric response from 0.7–5.4 eV of c-axis oriented AlN on Si (111) grown by molecular beam epitaxy. We determine the film thicknesses and find that for our AlN the refractive index is about 5–10% lower than in bulk AlN single crystals. Most likely, this discrepancy is due to a low film density (compared to bulk AlN), based on measurements using Rutherford backscattering. The films were also characterized using atomic force microscopy and x-ray diffraction to study the growth morphology. We find that AlN can be grown on Si (111) without buffer layers resulting in truely two-dimensional growth, low surface roughness, and relatively narrow x-ray peak widths.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


1997 ◽  
Vol 482 ◽  
Author(s):  
X. Q. Shen ◽  
S. Tanaka ◽  
S. Iwai ◽  
Y. Aoyagi

AbstractGaN growth was performed on 6H-SiC (0001) substrates by gas-source molecular beam epitaxy (GSMBE), using ammonia (NH3) as a nitrogen source. Two kinds of reflection high-energy electron diffraction (RHEED) patterns, named (1×1) and (2×2), were observed during the GaN growth depending on the growth conditions. By careful RHEED study, it was verified that the (1×1) pattern was corresponded to a H2-related nitrogen-rich surface, while (2×2) pattern was resulted from a Ga-rich surface. By x-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) characterizations, it was found that the GaN quality changed drastically grown under different RHEED patterns. GaN film grown under the (1×1) RHEED pattern showed much better qualities than that grown under the (2×2) one.


1999 ◽  
Vol 572 ◽  
Author(s):  
H. Siegle ◽  
Y. Kim ◽  
G. S. Sudhir ◽  
J. Kruger ◽  
P. Perlin ◽  
...  

ABSTRACTWe report on growth of GaN on Germanium as an alternative substrate material. The GaN films were deposited on Ge(001) substrates by plasma-assisted molecular beam epitaxy. Atomic force microscopy, x-ray diffraction, photoluminescence, and Raman spectroscopy were used to characterize the structural and optical properties of the films. We observed that the Ga/N ratio plays a crucial role in determining the phase purity and crystal quality. Under N-rich conditions the films were phase-mixed, containing cubic and hexagonal GaN, while in the Ga-rich regime they were purily hexagonal. The latter samples show bandedge luminescence with linewidths as small as 31 meV at low temperatures.


2001 ◽  
Vol 676 ◽  
Author(s):  
J. C. González ◽  
M. I. N. da Silva ◽  
W. N. Rodrigues ◽  
F. M. Matinaga ◽  
R. Magalhaes-Paniago ◽  
...  

ABSTRACTIn this work, we report optical and structural properties of vertical aligned self-assembled InAs quantum dots multilayers. The InAs quantum dots samples were grown by Molecular Beam Epitaxy. Employing Atomic Force Microscopy, Transmission Electron Microscopy, and Gracing Incident X-ray Diffraction we have studied the structural properties of samples with different number of periods of the multiplayer structure, as well as different InAs coverage. The optical properties were studied using Photoluminescence spectroscopy.


2019 ◽  
Vol 52 (1) ◽  
pp. 168-170
Author(s):  
Mieczyslaw A. Pietrzyk ◽  
Aleksandra Wierzbicka ◽  
Marcin Stachowicz ◽  
Dawid Jarosz ◽  
Adrian Kozanecki

Control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic devices. This paper reports the growth conditions and structural properties of ZnMgO nanowalls grown on the Si face of 4H-SiC substrates by molecular beam epitaxy without catalysts and buffer layers. Images from scanning electron microscopy revealed that the ZnMgO nanowalls are arranged in parallel rows following the stripe morphology of the SiC surface, and their thickness is around 15 nm. The crystal quality of the structures was evaluated by X-ray diffraction measurements.


2007 ◽  
Vol 06 (05) ◽  
pp. 407-410 ◽  
Author(s):  
I. P. KAZAKOV ◽  
V. I. KOZLOVSKY ◽  
V. P. MARTOVITSKY ◽  
YA. K. SKASYRSKY ◽  
M. D. TIBERI ◽  
...  

ZnSSe / ZnMgSSe MQW structures were grown by molecular beam epitaxy on GaAs substrates. The band gap of ZnMgSSe barriers was approximately 3 eV at room temperature. Cathodoluminescence, X-ray diffraction, optical, scanning electron beam, and atomic force microscopy were all used for structure characterization. Decay of the ZnMgSSe solid solution in at least two phases was observed. Improvement in the quality of the crystal lattice and surface morphology was achieved by mismatching the ZnMgSSe from the GaAs substrate by increasing the lattice period by 0.24%.


2003 ◽  
Vol 799 ◽  
Author(s):  
W. K. Cheah ◽  
W. J. Fan ◽  
S. F. Yoon ◽  
S. Wicaksono ◽  
R. Liu ◽  
...  

ABSTRACTLow temperature (4.5K) photoluminescence (PL) measurements of GaAs(N):Sb on GaAs grown by solid source molecular beam epitaxy (MBE) show a Sb-related defect peak at ∼1017nm (1.22eV). The magnitude of the Sb-related impurity PL peak corresponds in intensity with the prominence of the additional two-dimensional [115] high-resolution x-ray diffraction (HRXRD) defect peaks. The elimination of these defects can be a measure of the improvement in crystal quality of GaAsN:Sb and a Sb flux ≥ 1.3×10−8 Torr is needed to invoke the surfactant behavior in III-V dilute nitride MBE growth for a growth rate of 1μm/hr.


1999 ◽  
Vol 595 ◽  
Author(s):  
Olivier Parillaud ◽  
Volker Wagner ◽  
Hans-Jörg Bühlmann ◽  
François Lelarge ◽  
Marc Ilegems

AbstractWe present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Serge Zhuiykov ◽  
Eugene Kats ◽  
Tomoaki Sato ◽  
Hiroshi Ikeda ◽  
Norio Miura

Quasi-two-dimensional (Q2D) Nb 2 O 5 nanoflakes were synthesized by combined sol–gel/exfoliation method with the average thickness of 10–25 nm. Their structural, surface- and electro-chemical properties were closely studied and analyzed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), conductive atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques.


Sign in / Sign up

Export Citation Format

Share Document