Kinetics of agglomeration of NiSi and NiSi2 phase formation.

2002 ◽  
Vol 745 ◽  
Author(s):  
C. Detavernier ◽  
A. Özcan ◽  
C. Lavoie ◽  
Jean-Jordan Sweet ◽  
J. M. E. Harper

ABSTRACTWe have studied the kinetics of NiSi agglomeration and NiSi2 phase formation during heating of NiSi on Si, using simultaneous in situ measurements of resistance, light scattering and x-ray diffraction. NiSi is a desirable contact to Si because of its low resistivity, limited Si consumption and low formation temperature. However, the formation of the higher resistivity phase NiSi2 must be avoided for device applications. Ni thin films 5 to 30 nm thick were deposited on substrates of poly-Si and silicon-on-insulator (SOI) and were studied using heating rates from 0.3 to 27 °C/s. At low heating rates and for the thinnest films studied, NiSi agglomeration precedes NiSi2 nucleation by as much as 350°C. The agglomeration temperature decreases with decreasing film thickness and linewidth. Once the film is agglomerated, the formation of NiSi2 is delayed to higher temperature by its low nucleation site density and decreased contact area. We conclude that agglomeration is the primary failure mechanism limiting the morphological stability of NiSi as a contact material to Si devices.

2011 ◽  
Vol 172-174 ◽  
pp. 646-651 ◽  
Author(s):  
Gamra Tellouche ◽  
Khalid Hoummada ◽  
Dominique Mangelinck ◽  
Ivan Blum

The phase formation sequence of Ni silicide for different thicknesses is studied by in situ X ray diffraction and differential scanning calorimetry measurements. The formation of a transient phase is observed during the formation of δ-Ni2Si; transient phases grow and disappear during the growth of another phase. A possible mechanism is proposed for the transient phase formation and consumption. It is applied to the growth and consumption of θ-Ni2Si. A good accordance is found between the proposed model and in situ measurement of the kinetics of phase formation obtained by x-ray diffraction and differential scanning calorimetry for higher thickness.


1995 ◽  
Vol 402 ◽  
Author(s):  
K. L. Saenger ◽  
C. Cabral ◽  
L. A. Clevenger ◽  
R. A. Roy

AbstractA simple, quasi-in situ resistivity technique was used to examine the C49 to C54 conversion kinetics of TiSi2 on sub-micron (0.2 to 1.1 μm) line structures formed in a self-aligned silicide (salicide) process. This technique was used to examine both aggregate conversion vs. time behavior and individual-line conversion vs. time behavior as a function of linewidth and polysilicon doping. As linewidth decreased, aggregate conversion vs. time at temperature behavior slowed, and the conversion behaviors shown by nominally identical lines became more variable. Four line behaviors were identified on the narrowest lines: short incubation/prompt conversion, gradual conversion, incomplete conversion, and no conversion. These behaviors are compared to those predicted by the Avrami equation, and to those predicted for a nucleation-site-density controlled reaction under conditions of low nucleation density. It is suggested that C49-C54 conversion in narrow lines may be primarily limited not by the number of C54 nucleation events, but by the presence of randomly occurring line-edge “defect” sites which slow and/or halt C54 grain growth.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Luqman Ali Shah ◽  
Rida Javed ◽  
Mohammad Siddiq ◽  
Iram BiBi ◽  
Ishrat Jamil ◽  
...  

AbstractThe in-situ stabilization of Ag nanoparticles is carried out by the use of reducing agent and synthesized three different types of hydrogen (anionic, cationic, and neutral) template. The morphology, constitution and thermal stability of the synthesized pure and Ag-entrapped hybrid hydrogels were efficiently confirmed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). The prepared hybrid hydrogels were used in the decolorization of methylene blue (MB) and azo dyes congo red (CR), methyl Orange (MO), and reduction of 4-nitrophenol (4-NP) and nitrobenzene (NB) by an electron donor NaBH4. The kinetics of the reduction reaction was also assessed to determine the activation parameters. The hybrid hydrogen catalysts were recovered by filtration and used continuously up to six times with 98% conversion of pollutants without substantial loss in catalytic activity. It was observed that these types of hydrogel systems can be used for the conversion of pollutants from waste water into useful products.


1970 ◽  
Vol 17 (1) ◽  
pp. 38-42
Author(s):  
Anna BIEDUNKIEWICZ ◽  
Pawel FIGIEL ◽  
Marta SABARA

The results of investigations on pyrolysis and oxidation of pure polyacrylonitrile (PAN) and its mixture with N,N-dimethylformamide (DMF) under non-isothermal conditions at linear change of samples temperature in time are presented. In each case process proceeded in different way. During pyrolysis of pure PAN the material containing mainly the product after PAN cyclization was obtained, while pyrolysis of PAN+DMF mixture gave the product after cyclization and stabilization. Under conditions of measurements, in both temperature ranges, series of gaseous products were formed.For the PAN-DMF system measurements at different samples heating rates were performed. The obtained results were in accordance with the kinetics of heterogeneous processes theory. The process rates in stages increased along with the temperature increase, and TG, DTG and HF function curves were shifted into higher temperature range. This means that the process of pyrolysis and oxidation of PAN in dry air can be carried out in a controlled way.http://dx.doi.org/10.5755/j01.ms.17.1.246


2016 ◽  
Vol 18 (42) ◽  
pp. 29435-29446 ◽  
Author(s):  
Zhuoran Wang ◽  
Samir Elouatik ◽  
George P. Demopoulos

The in situ Raman monitored annealing method is developed in this work to provide real-time information on phase formation and crystallinity evolution of kesterite deposited on a TiO2 mesoscopic scaffold.


2012 ◽  
Vol 111 (7) ◽  
pp. 07A316 ◽  
Author(s):  
Samuel J. Kernion ◽  
Paul R. Ohodnicki ◽  
Michael E. McHenry

2020 ◽  
Vol 53 (4) ◽  
pp. 1163-1166
Author(s):  
Karsten Mesecke ◽  
Winfried Malorny ◽  
Laurence N. Warr

This note describes an autoclave chamber developed and constructed by Anton Paar and its application for in situ experiments under hydrothermal conditions. Reactions of crystalline phases can be studied by successive in situ measurements on a conventional laboratory X-ray diffractometer with Bragg–Brentano geometry at temperatures <483 K and saturated vapour pressure <2 MPa. Variations in the intensity of X-ray diffraction reflections of both reactants and products provide quantitative information for studying the reaction kinetics of both dissolution and crystal growth. Feasibility is demonstrated by studying a cementitious mixture used for autoclaved aerated concrete production. During a period of 5.7 h at 466 K and 1.35 MPa, the crystallization of torbermorite and the partial consumption of quartz were monitored.


2021 ◽  
Author(s):  
Jinsheng Liao ◽  
Minghua Wang ◽  
Fulin Lin ◽  
Zhuo Han ◽  
Datao Tu ◽  
...  

Abstract Lanthanide (Ln3+)-doped phosphors generally suffer from thermal quenching, in which their photoluminescence (PL) intensities decrease at the higher temperature. Herein, we report a class of unique two-dimensional negative-thermal-expansion phosphor of Sc2(MoO4)3:Yb/Er. By virtue of the reduced distances between sensitizers and emitters as well as confined energy migration with increasing the temperature, a 45-fold enhancement of green upconversion (UC) luminescence and a 450-fold enhancement of near-infrared downshifting (DS) luminescence of Er3+ are achieved from 25 to 500 ˚C. The thermally boosted UC and DS luminescence mechanism is systematically investigated through in situ temperature-dependent Raman spectroscopy, synchrotron X-ray diffraction and PL dynamics. Moreover, the luminescence lifetime of 4I11/2 of Er3+ in Sc2(MoO4)3:Yb/Er displays a strong temperature dependence, enabling ratiometric thermometry with the highest relative sensitivity of 13.4%/K at 298 K. These findings may gain a vital insight into the design of negative-thermal-expansion Ln3+-doped phosphors for versatile applications.


2016 ◽  
Vol 88 (11) ◽  
pp. 1684-1692 ◽  
Author(s):  
Lukas C. Buelens ◽  
Vladimir V. Galvita ◽  
Hilde Poelman ◽  
Christophe Detavernier ◽  
Guy B. Marin

Sign in / Sign up

Export Citation Format

Share Document