A Simple Method of Tip Shape Calibration for Nano-Indentation Test of Thin Films

2002 ◽  
Vol 750 ◽  
Author(s):  
Koichiro Hattori ◽  
Junhua Xu ◽  
Hidetoshi Nakano ◽  
Isao Kojima

ABSTRACTWe have evaluated the hardness and elastic properties of thin films by using a simple procedure to calibrate the tip shape effect of the nano-indentation data. For the simplification, a truncated-shape approximation and linear fit are used to estimate the tip-shape and contact stiffness, respectively, substituting for polynomial area-function and power-law fit. The parameters used in the correction were determined by a fused silica and a single crystal silicon (100) surface. Different film/substrate systems are designed in order to assess these fitted parameters used in the correction. The transition behavior observed from the film to the substrate is well coincide with the other film thickness results, where the indentation depth above 50nm.

Open Physics ◽  
2006 ◽  
Vol 4 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Ahti Niilisk ◽  
Mart Moppel ◽  
Martti Pärs ◽  
Ilmo Sildos ◽  
Taavi Jantson ◽  
...  

AbstractThe Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.


1981 ◽  
Vol 25 ◽  
pp. 365-371
Author(s):  
Glen A. Stone

This paper presents a new method to measure the thickness of very thin films on a substrate material using energy dispersive x-ray diffractometry. The method can be used for many film-substrate combinations. The specific application to be presented is the measurement of phosphosilicate glass films on single crystal silicon wafers.


1991 ◽  
Vol 6 (6) ◽  
pp. 1278-1286 ◽  
Author(s):  
R. Ramesham ◽  
T. Roppel ◽  
C. Ellis ◽  
D.A. Jaworske ◽  
W. Baugh

Polycrystalline diamond thin films have been deposited on single crystal silicon substrates at low temperatures (⋚ 600 °C) using a mixture of hydrogen and methane gases by high pressure microwave plasma-assisted chemical vapor deposition. Low temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 °C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.


1990 ◽  
Vol 200 ◽  
Author(s):  
Chi K. Kwok ◽  
Seshu B. Desu ◽  
Lee Kammerdiner

ABSTRACTFerroelectric and transparent lead–zirconate–titanate thin films were fabricated by rf sputtering. The substrates used were Pt–coated single crystal silicon. The deposition temperatures were relatively low (≅ 200°C). Annealing at high temperatures yielded first pyrochlore type and finally perovskite with good switching characteristics. The phase structure, microstructure, surface composition, and properties were measured as a function annealing time and temperature. In general, the Pb concentration on the surface decreased with increasing annealing temperature or time, whereas Zr concentration increased. It was observed that the grain size of perovskite PZT did not show any significant changes with increasing either anneal temperature or time.


2002 ◽  
Vol 734 ◽  
Author(s):  
R. Govinthasamy ◽  
J. H. Rhee ◽  
S. C Sharma

ABSTRACTHighly conducting thin films of C60 were deposited by thermal evaporation in high vacuum on single crystal silicon substrates. The microstructure of the films was characterized by using Atomic Force Microscopy, and laser Raman spectroscopy. The films were polymerized by uv irradiation. The dc electrical resistivities of the as-deposited and uv-polymerized films were measured as functions of temperature between 295 and 17K by the four-probe technique. We present results on the effects of uv-irradiation on the surface microstructure and the temperature dependence of the electrical resistivity of these films.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1138-1142 ◽  
Author(s):  
Chuanbao Cao ◽  
Jiyu Fu ◽  
Hesun Zhu

Carbon nitride thin films were prepared by cathodic electrodeposition. The dicyandiamide compound dissovled in acetone was selected as the organic precursor. Single crystal silicon wafers and conductive glass (ITO) wafers were used as substrates. XPS measurements indicated that the films composed of carbon and nitrogen elements. The nitrogen content reached 41%. The polycrystalline β-C3N4 should exit in the prepared film from TED measurements. The nano hardness of the films on ITO substrates were as high as 13 GPa. The structure and properties were studies.


Sign in / Sign up

Export Citation Format

Share Document