Structure, Annealing Characteristics and Mechanical Properties of Mg60Cu30-yY10Siy Bulk Amorphous Alloys

2002 ◽  
Vol 754 ◽  
Author(s):  
U. Wolff ◽  
B. Yang ◽  
N. Pryds ◽  
J.A. Wert

ABSTRACTThe effect of different Si contents on the glass forming ability (GFA) and the amorphous-to-crystalline transformation has been investigated for the Mg-Cu-Y-Si system. Four Mg60Cu30-yY10Siy (y = 1–5 at.%) alloys were prepared using a relatively simple technique of rapid cooling of the melt in a copper mould. Crystallization was induced by heat treatment of the alloys and the samples were then characterized concerning their microstructure and thermal stability by X-ray diffraction (XRD), optical (OM) and scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) at a constant heating rate. Partial substitution of Cu by Si leads to a transition of the as-cast structure at a constant cooling rate from amorphous to crystalline with increasing Si content. Furthermore, the glass transition temperature (Tg) of the Mg-Cu-Y-Si alloy is lower compared to the Mg-Cu-Y system. The mechanical properties of the bulk Mg-Cu-Y-Si alloys have been investigated and found to vary with the Si content.

2005 ◽  
Vol 475-479 ◽  
pp. 3393-3396
Author(s):  
Hui Xu ◽  
Xiao Hua Tan ◽  
Nannan Qi ◽  
Qing Wang ◽  
Yuanda Dong

The glass-forming ability, thermal stability and magnetic properties of the Nd60-xDyxFe30Al10 (x=0, 2, 5) bulk amorphous alloys were investigated by x-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and the vibrating sample magnetometer (VSM). The results show that the glass forming ability of the Nd60-xDyxFe30Al10 (x=0, 2, 5) alloys decrease with increasing Dy content. The as-cast Nd60-xDyxFe30Al10 (x=0, 2, 5) alloys show hard magnetic behavior at room temperature. With increasing Dy content, the intrinsic coercivity of the alloys increase significantly while the saturation magnetization and remanence of the alloys decrease monotonously. With increasing annealed temperature, the intrinsic coercivity of the Nd55Fe30Al10Dy5 alloy decreased significantly, while the saturation magnetization and remanence decrease monotonously. The Nd55Fe30Al10Dy5 alloy shows soft magnetic behavior after annealed at 773K for 30 min.


2012 ◽  
Vol 583 ◽  
pp. 82-85
Author(s):  
Yong Jun Tang ◽  
Hui Xu ◽  
Xiao Hua Tan ◽  
Hua Man ◽  
Qin Bai

Bulk Nd60-xCo15+xAl25 (where x =0, 2, 5, 8, 11) sheet alloys were prepared by argon arc melting and suction casting a copper mold. Glassing forming ability (GFA) of these alloys was investigated by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Due to the dissimilarity reflected from DSC curves the thermodynamic calculation was applied. The values of Gibbs free energy (∆Gl-x (Tg)) for the amorphous alloys were gave out and some GFA criterions were adopted to make a comparison among the samples.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2011 ◽  
Vol 172-174 ◽  
pp. 190-195 ◽  
Author(s):  
Giorgia T. Aleixo ◽  
Eder S.N. Lopes ◽  
Rodrigo Contieri ◽  
Alessandra Cremasco ◽  
Conrado Ramos Moreira Afonso ◽  
...  

Ti-based alloys present unique properties and hence, are employed in several industrial segments. Among Ti alloys, β type alloys form one of the most versatile classes of materials in relation to processing, microstructure and mechanical properties. It is well known that heat treatment of Ti alloys plays an important role in determining their microstructure and mechanical behavior. The aim of this work is to analyze microstructure and phases formed during cooling of β Ti-Nb-Sn alloy through different cooling rates. Initially, samples of Ti-Nb-Sn system were prepared through arc melting furnace. After, they were subjected to continuous cooling experiments to evaluate conditions for obtaining metastable phases. Microstructure analysis, differential scanning calorimetry and X-ray diffraction were performed in order to evaluate phase transformations. Depending on the cooling rate and composition, α” martensite, ω phase and β phase were obtained. Elastic modulus has been found to decrease as the amount of Sn was increased.


2018 ◽  
Vol 89 (9) ◽  
pp. 1770-1781 ◽  
Author(s):  
Huaizhong Xu ◽  
Benedict Bauer ◽  
Masaki Yamamoto ◽  
Hideki Yamane

A facile route was proposed to fabricate core–sheath microfibers, and the relationships among processing parameters, crystalline structures and the mechanical properties were investigated. The compression molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)/poly(L-lactic acid) (PLLA) strip enhanced the spinnability of PHBH and the mechanical properties of PLLA as well. The core–sheath ratio of the fibers was determined by the prefab strip, while the PLLA sheath component did not completely cover the PHBH core component due to the weak interfacial tension between the melts of PHBH and PLLA. A rotational target was applied to collect aligned fibers, which were further drawn in a water bath. The tensile strength and the modulus of as-spun and drawn fibers increased with increasing the take-up velocities. When the take-up velocity was above 500 m/min, the jet became unstable and started to break up at the tip of the Taylor cone, decreasing the mechanical properties of the fibers. The drawing process facilitated the crystallization of PLLA and PHBH, and the tensile strength and the modulus increased linearly with the increasing the draw ratio. The crystal information displayed from wide-angle X-ray diffraction patterns and differential scanning calorimetry heating curves supported the results of the tensile tests.


2012 ◽  
Vol 7 (3) ◽  
pp. 155892501200700 ◽  
Author(s):  
Sanjukta Chatterjee ◽  
Felix A. Reifler ◽  
Bryan T. Chu ◽  
Rudolf Hufenus

This paper addresses the influence of carbon nanotubes (CNT) on the structure and mechanical properties of high tensile strength thermoplastic polymer fibers. Polyamide (PA) fibers with different draw ratios, with and without CNTs as fillers, and having mechanical properties close to industrial standards were spun in a pilot melt spinning plant. The morphology of the fibers was investigated using optical microscopy, nuclear magnetic resonance (NMR) and 2-D wide angle x-ray diffraction (WAXD). Differential scanning calorimetry (DSC) was carried out to get an estimate of the crystallinity. For a concise interpretation of the results of the tensile measurements performed on the fibers, a parameter was developed to account for the detrimental influence of polymer extrusion on their mechanical properties. The CNTs seemed to act as sites for the growth of un-oriented crystalline domains converted from oriented regions, without yielding a mechanical reinforcing effect.


1996 ◽  
Vol 457 ◽  
Author(s):  
J. Zhu ◽  
T. Pradell ◽  
N. Clavaguera ◽  
M. T. Clavaguera-Mora

ABSTRACTDifferential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Neutron Diffraction (ND) and Mössbauer Spectroscopy (MS) were used to study the nanocrystallization process of Fe73.5Cu1Nb3Si22.5–xBx (x=5, 7, 8, 9 and 12) amorphous alloys. Both the temperature range and the activation energy of Fe(Si) phase precipitation from the amorphous martrix increase with the initial B composition. The initial Si composition influences the mechanism of the nanocrystallization: for the Si rich samples, the beginning of nucleation and growth processes is interface controlled, for the B rich samples it is diffusion controlled. Secondary crystallization from the remaining amorphous is mainly Fe3B and Fe2B, the ratio of Fe3B/Fe2B being dependent on the initial composition too.


2012 ◽  
Vol 490-495 ◽  
pp. 3868-3873 ◽  
Author(s):  
Xiao Hong Yang ◽  
Xi Peng Nie ◽  
Jian Zhong Jiang

Bulk metallic glasses (BMGs) of Cu45Zr48-xAl7Tix with x= 0, 1.5, and 3 at.% were prepared by copper mould casting. The corrosion resistance of the BMGs with different Ti contents was examined by potentiodynamic polarization tests and weight loss measurements in 1 N NaOH, 1 N H2SO4, 1 N H2SO4 + 0.01 N NaCl and 0.5 N NaCl solutions, respectively. The newly-developed BMGs’ corrosion resistance in Cl-- or both H+ and Cl--ions containing solutions can be greatly enhanced. The influence of Ti addition on glass forming ability (GFA) and thermal stability was investigated by x-ray diffraction and differential scanning calorimetry in detail. The alloy containing 1.5 at.% Ti exhibits the largest GFA, the critical size comes up to 10 mm in diameter.


Sign in / Sign up

Export Citation Format

Share Document