Direct Fabrication of Patterned Functional Ceramic Films by Soft Solution Processing without Post-Firing

2002 ◽  
Vol 758 ◽  
Author(s):  
Masahiro Yoshimura ◽  
Tomoaki Watanabe ◽  
Takeshi Fujiwara ◽  
Ryo Teranishi

ABSTRACTWe are proposing an innovative concept and technology, Soft Solution Processing (SSP) for ceramics, which aims to achieve direct fabrication of shaped, sized, located, oriented ceramic materials from solutions without firing and/or sintering. We have successfully fabricated thin and thick films of BaTiO3, SrTiO3, BaWO4, SrMoO4, LiCoO2, and LiNiO2 by SSP in aqueous solutions from room temperature to 200 °C. In these experiments, interfacial reactions between a solid reactant (substrate) and component(s) in a solution have been designed and realized. By locally activating the reaction and moving the reaction point dynamically in these reactions, we can produce patterned ceramics directly in solution without masking, etching, pattern forming, or any post-heating such as firing or sintering. In this paper we present recent results for patterned ceramic films of PbS, CdS, and LiCoO2. The processes used to produce these films are entirely new, and represent the first examples of successful direct patterning of ceramics from solutions. In previous reports, heating processes have been essential for synthesis and/or sintering of powders and precursors to obtain patterns in ceramic materials. Such processes inevitably cost environmentally and economically. In contrast, our method, where no firing is needed, provides an environmentally and economically less expensive alternative.

2018 ◽  
Vol 44 (14) ◽  
pp. 16295-16301 ◽  
Author(s):  
Neamul H. Khansur ◽  
Udo Eckstein ◽  
Lisa Benker ◽  
Ulrike Deisinger ◽  
Benoit Merle ◽  
...  

Nano Letters ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 2310-2317
Author(s):  
Maxime Gayrard ◽  
Justine Voronkoff ◽  
Cédric Boissière ◽  
David Montero ◽  
Laurence Rozes ◽  
...  

MRS Bulletin ◽  
2009 ◽  
Vol 34 (8) ◽  
pp. 561-568 ◽  
Author(s):  
Jonah Erlebacher ◽  
Ram Seshadri

AbstractPorous metals and ceramic materials are of critical importance in catalysis, sensing, and adsorption technologies and exhibit unusual mechanical, magnetic, electrical, and optical properties compared to nonporous bulk materials. Materials with nanoscale porosity often are formed through molecular self-assembly processes that lock in a particular length scale; consider, for instance, the assembly of crystalline mesoporous zeolites with a pore size of 2–50 nm or the evolution of structural domains in block copolymers. Of recent interest has been the identification of general kinetic pattern-forming principles that underlie the formation of mesoporous materials without a locked- in length scale. When materials are kinetically locked out of thermodynamic equilibrium, temperature or chemistry can be used as a “knob” to tune their microstructure and properties. In this issue of the MRS Bulletin, we explore new porous metal and ceramic materials, which we collectively refer to as “hard” materials, formed by pattern-forming instabilities, either in the bulk or at interfaces, and discuss how such nonequilibrium processing can be used to tune porosity and properties. The focus on hard materials here involves thermal, chemical, and electrochemical processing usually not compatible with soft (for example, polymeric) porous materials and generally adds to the rich variety of routes to fabricate porous materials.


1995 ◽  
Vol 380 ◽  
Author(s):  
Craig T. Salling

ABSTRACTThe ability to create atomic-scale structures with the scanning tunneling microscope (STM) plays an important role in the development of a future nanoscale technology. I briefly review the various modes of STM-based fabrication and atomic manipulation. I focus on using a UHV-STM to directly pattern the Si(001) surface by atomic manipulation at room temperature. By carefully adjusting the tip morphology and pulse voltage, a single atomic layer can be removed from the sample surface to define features one atom deep. Segments of individual dimer rows can be removed to create structures with atomically straight edges and with lateral features as small as one dimer wide. Trenches ∼3 nm wide and 2–3 atomic layers deep can be created with less stringent control of patterning parameters. Direct patterning provides a straightforward route to the fabrication of nanoscale test structures under UHV conditions of cleanliness.


2021 ◽  
Author(s):  
Jing Chen ◽  
lei Wu ◽  
Luanfan Duan ◽  
Dongren Liu

Abstract Considering that the electric refrigeration temperature range of 0.94BNT-0.06BT ceramic materials is 100 ~ 140℃, the electric refrigeration performance of the 0.94BNT-0.06BT ceramic material system was modified by LiNbO3 doping to reduce the cooling temperature. As a result, the refrigeration temperature range of the 0.94BNT-0.06BT ceramic material system was lowered to 25 ~ 80℃, achieving its cooling effect near room temperature, and in this temperature range, the adiabatic temperature changes ∆T > 0.6K.


1989 ◽  
Vol 167 ◽  
Author(s):  
R. C. Enck ◽  
R. D. Harris

AbstractThe thermal conductivity of ceramic materials used for IC substrates and packages has increased in importance as chip sizes have decreased and heat loads have risen. AIN which has a room temperature (RT) thermal conductivity (λ) greater than 200 W/m·K and BeO with λ(RT) ∼260 W/m·K are the major candidates for applications demanding high conductivity. Conflicting reports of the temperature dependences of λ for these materials over the range of interest for packaging use (≤200°C) have been published, with some reports suggesting a crossover in λ. These reported differences may be due to the reported problems in measuring λ in AIN using the flash diffusivity method. For the present experiments, we have used a new long wavelength laser flash diffusivity system which has been shown to determine thermal diffusivity to better than ± 3% for AIN with sample thicknesses ranging from 0.3 mm to 5 mm. No absorbinq coatings are required and no correction factors are needed to fit the data to theory. We report λ from room temperature to 400°C for AIN from a number of commercial sources, and for BeO and SiC. At room temperature, BeO has the highest thermal conductivity, but as the temperature is raised, the values for BeO and AIN approach one another, with crossover observed at about 350°C for the highest conductivity AIN sample studied. Recent steady state heat flow measurements agree with our thermal conductivity values rather than with previous literature values.


1977 ◽  
Vol 55 (19) ◽  
pp. 1725-1731 ◽  
Author(s):  
J. B. Webb ◽  
M. Sayer ◽  
A. Mansingh

In many polycrystalline ceramic materials the transport properties are strongly affected by internal barrier effects or by the presence of contact barriers. The transport properties of La1−xSrxCrO3, 0 ≤ x ≤ 0.2 have been investigated and the degree to which these barriers affect the measured transport properties has been established. Measurements of the dc and ac conductivity in the range 77 K ≤ T ≤ 1300 K are consistent with the hopping of polarons in a defect band of localized states at the Fermi energy with the thermopower essentially independent of temperature. A polaron radius of 3.5 Å has been determined with room temperature mobility of 5 × 10−4 cm2 V−1 s−1.


Sign in / Sign up

Export Citation Format

Share Document