Microstructural And Microchemical Analysis of Chalcopyrite Cu(In,Ga)Se2 Films

2003 ◽  
Vol 763 ◽  
Author(s):  
Chun-Ming Li ◽  
Chang-Hui Lei ◽  
Ian M. Robertson ◽  
Angus Rockett

AbstractThe microstructure and microchemistry of Cu(In, Ga)Se2 (CIGS) films have been analyzed by means of transmission electron microscopy (TEM). Specimens were obtained from a number of groups producing high-performance solar cells from these materials. Both plan-view and cross-sectional TEM samples were prepared by mechanical grinding and ion milling. Twins can be found easily within the films while dislocations are present only in a few grains and with low density. No extended structural defects such as stacking faults were discovered. X-ray energy dispersive spectroscopy was used to study the chemical composition of grains and grain boundaries. Experimental results showed no difference between the composition in the grain interiors and the grain boundary. In addition, there is no obvious enhancement of oxygen and sodium at grain boundaries. Structural depth dependences were also not found.

1983 ◽  
Vol 23 ◽  
Author(s):  
W. Maszara ◽  
C. Carter ◽  
D. K. Sadana ◽  
J. Liu ◽  
V. Ozguz ◽  
...  

ABSTRACTLow energy, shallow BF2+ implants were carried out at room or liquid nitrogen temperature into deep pre-amorphized (100) Si for better control of the dopant profile and post-annealing structural defects. Cross sectional and angle polished plan view transmission electron microscopy were used to study the structural quality of the implanted layer, while SIMS provided a chemical profile. Four types of structural defects were observed in BF2+ implanted, pre-amorphized samples following rapid thermal annealing with a halogen lamp. An in-situ ion beam annealing and the presence of F in the Si lattice were related to the creation of the defects. Good correlations between F gettering and TEM observed defects were found to exist. Implantation of B+ into a pre-amorphized Si surface and subsequent rapid thermal annealing was found to produce a wide defect-free surface layer.


1990 ◽  
Vol 199 ◽  
Author(s):  
Shang. H. Rou ◽  
Philip. D. Hren ◽  
Angus. I. Kingon

ABSTRACTSingle crystal MgO is a common substrate for the deposition of oxide thin films. The conventional cross sectional transmission electron microscopy sample preparation procedure suffers the drawbacks of: 1)- extensive ion milling time; 2) a higher milling rate for the thin films than for the substrate; 3) introduction of artifacts and contamination during ion milling; and 4) generation of excess defects into the substrate during mechanical thinning. An additional chemical thinning step using hot orthophosphoric acid can reduce or eliminate these adverse effects.This technique can be applied generally to thin film samples deposited on substrates with a low ion milling rate. Furthermore, substrates which are sensitive to mechanical stress and ion beam damage are also suitable for this technique, provided an appropriate chemical polishing solution and compatible epoxy can be found. The unique features of this technique are briefly presented.


2014 ◽  
Vol 20 (5) ◽  
pp. 1471-1478 ◽  
Author(s):  
Esperanza Luna ◽  
Javier Grandal ◽  
Eva Gallardo ◽  
José M. Calleja ◽  
Miguel Á. Sánchez-García ◽  
...  

AbstractWe discuss observations of InN nanowires (NWs) by plan-view high-resolution transmission electron microscopy (TEM). The main difficulties arise from suitable methods available for plan-view specimen preparation. We explore different approaches and find that the best results are obtained using a refined preparation method based on the conventional procedure for plan-view TEM of thin films, specifically modified for the NW morphology. The fundamental aspects of such a preparation are the initial mechanical stabilization of the NWs and the minimization of the ion-milling process after dimpling the samples until perforation. The combined analysis by plan-view and cross-sectional TEM of the NWs allows determination of the degree of strain relaxation and reveals the formation of an unintentional shell layer (2–3-nm thick) around the InN NWs. The shell layer is composed of bcc In2O3 nanocrystals with a preferred orientation with respect to the wurtzite InN: In2O3 [111] || InN [0001] and In2O3 <110> || InN< $$ 11\bar 20 $$ >.


1987 ◽  
Vol 115 ◽  
Author(s):  
D. Bahnck ◽  
J. L. Batstone ◽  
Julia M. Phillips

ABSTRACTTechniques for the preparation of specimens for Transmission Electron Microscopy analysis are described. Cross-sectional specimens of insulator/semiconductor heterostructures have been successfully prepared. The problem of differential thinning rates and interface amorphization during argon ion-milling have been overcome using low argon ion accelerating voltages and shallow angles of incidence. Techniques for preparation of plan view specimens include the preparation of silicon substrates for in-situ crystal growth in an ultrahigh vacuum Transmission Electron Microscope.


2000 ◽  
Vol 639 ◽  
Author(s):  
D. Cherns ◽  
Z. Liliental-Weber

ABSTRACTTransmission electron microscopy has been used to examine dislocations present in an epitaxial laterally overgrown (ELOG) sample of GaN grown on (0001)sapphire. Studies of both plan-view and cross-sectional samples revealed arrays of dislocations present in the (11-20) boundary between the seed and the wing (overgrown) material and at the meeting front between adjacent wings, as well as dislocations in the form of half-loops extending into the wing regions. Both the boundary and half-loop dislocations had 1/3<11-20> Burgers vectors which were either perpendicular (boundary dislocations) or at 30°s (half-loops) to the boundary plane. Large angle convergent beam electron diffraction was used to show that the boundary dislocations and halfloops correlated respectively with tilts and twists of the wing material about (11-20). A model is proposed whereby the half-loops are generated from threading dislocations by shear stresses acting along the stripe direction. The origin, and elimination, of these stresses is discussed.


Author(s):  
J.Y. Lee

In the oxidation of metals and alloys, microstructural features at the atomic level play an important role in the nucleation and growth of the oxide, but little is known about the atomic mechanisms of high temperature oxidation. The present paper describes current progress on crystallographic aspects of aluminum oxidation. The 99.999% pure, polycrystalline aluminum was chemically polished and oxidized in 1 atm air at either 550°C or 600°C for times from 0.5 hr to 4 weeks. Cross-sectional specimens were prepared by forming a sandwich with epoxy, followed by mechanical polishing and then argon ion milling. High resolution images were recorded in a <110>oxide zone-axis orientation with a JE0L JEM 200CX microscope operated at 200 keV.


Author(s):  
Julia T. Luck ◽  
C. W. Boggs ◽  
S. J. Pennycook

The use of cross-sectional Transmission Electron Microscopy (TEM) has become invaluable for the characterization of the near-surface regions of semiconductors following ion-implantation and/or transient thermal processing. A fast and reliable technique is required which produces a large thin region while preserving the original sample surface. New analytical techniques, particularly the direct imaging of dopant distributions, also require good thickness uniformity. Two methods of ion milling are commonly used, and are compared below. The older method involves milling with a single gun from each side in turn, whereas a newer method uses two guns to mill from both sides simultaneously.


Author(s):  
F. Shaapur

Non-uniform ion-thinning of heterogenous material structures has constituted a fundamental difficulty in preparation of specimens for transmission electron microscopy (TEM). A variety of corrective procedures have been developed and reported for reducing or eliminating the effect. Some of these techniques are applicable to any non-homogeneous material system and others only to unidirectionalfy heterogeneous samples. Recently, a procedure of the latter type has been developed which is mainly based on a new motion profile for the specimen rotation during ion-milling. This motion profile consists of reversing partial revolutions (RPR) within a fixed sector which is centered around a direction perpendicular to the specimen heterogeneity axis. The ion-milling results obtained through this technique, as studied on a number of thin film cross-sectional TEM (XTEM) specimens, have proved to be superior to those produced via other procedures.XTEM specimens from integrated circuit (IC) devices essentially form a complex unidirectional nonhomogeneous structure. The presence of a variety of mostly lateral features at different levels along the substrate surface (consisting of conductors, semiconductors, and insulators) generally cause non-uniform results if ion-thinned conventionally.


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


2004 ◽  
Vol 839 ◽  
Author(s):  
Peter Moeck ◽  
Wentao Qin ◽  
Philip B. Fraundorf

ABSTRACTIt is well known that the crystallographic phase and morphology of many materials changes with the crystal size in the tens of nanometer range and that many nanocrystals possess structural defects in excess of their equilibrium levels. A need to determine the ideal and real structure of individual nanoparticles, therefore, arises. High-resolution phase-contrast transmission electron microscopy (TEM) and atomic resolution Z-contrast scanning TEM (STEM) when combined with transmission electron goniometry offer the opportunity of develop dedicated methods for the crystallographic characterization of nanoparticles in three dimensions. This paper describes tilt strategies for taking data from individual nanocrystals “as found”, so as to provide information on their lattice structure and orientation, as well as on the structure and orientation of their surfaces and structural defects. Internet based java applets that facilitate the application of this technique for cubic crystals with calibrated tilt-rotation and double-tilt holders are mentioned briefly. The enhanced viability of image-based nanocrystallography in future aberration-corrected TEMs and STEMs is illustrated on a nanocrystal model system.


Sign in / Sign up

Export Citation Format

Share Document