Thin Film Transistors on Plastic Substrates Using Silicon Deposited by Microwave ECR-CVD

2003 ◽  
Vol 769 ◽  
Author(s):  
Lihong Teng ◽  
Wayne A. Anderson

AbstractThe properties of thin film transistors (TFT's) on plastic substrates with active silicon films deposited by microwave ECR-CVD were studied. Two types of plastic were used, PEEK and polyimide. The a-Si:H TFT deposited at 200°C on polyimide substrates showed a saturation field effect mobility of 4.5 cm2/V-s, a threshold voltage of 3.7 V, a subthreshold swing of 0.69 V/dec and an ON/OFF current ratio of 7.9×106, while the TFT fabricated on PEEK at 200°C showed a saturation field effect mobility of 3.9 cm2/V-s, a threshold voltage of 4.1 V, a subthreshold swing of 0.73 V/dec and an ON/OFF current ratio of 4×106. Comparison is made to TFT's with the Si deposited at 400°C on glass.

2004 ◽  
Vol 814 ◽  
Author(s):  
Jeong In Han ◽  
Yong Hoon Kim ◽  
Sung Kyu Park ◽  
Dae Gyu Moon ◽  
Won Keun Kim

AbstractThe stability of organic thin film transistors (OTFTs) has become one of the most vital issues in this area of research. In this report, we investigated the stability of rubber stamp printed OTFTs. The electrical properties such as saturation field effect mobility, threshold voltage and on/off current ratio change significantly in ambient air condition. In order to analyze the degradation of the device, transistors were measured in vacuum, dry N2 and air environment as a function of time. In vacuum and dry N2 atmosphere, saturation field effect mobility and threshold voltage variations are relatively small compared to those measured in ambient condition.To realize an air stable device, we applied a passivation layer which protects the device from oxygen or water molecules which is believed to be the source of the degradation. With the passivation layer, the threshold voltage shift was reduced suggesting that a proper passivation layer is a prerequisite in organic-based electronics.


2007 ◽  
Vol 124-126 ◽  
pp. 407-410
Author(s):  
Sang Chul Lim ◽  
Seong Hyun Kim ◽  
Gi Heon Kim ◽  
Jae Bon Koo ◽  
Jung Hun Lee ◽  
...  

We report the effects of instability with gate dielectrics of pentacene thin film transistors (OTFTs) inverter circuits. We used to the UV sensitive curable resin and poly-4-vinylphenol(PVP) by gate dielectrics. The inverter supply bias is VDD= -40 V. For a given dielectric thickness and applied voltage, pentacene OTFTs with inverter circuits measurements field effect mobility, on-off current ratio, Vth. The field effect mobility 0.03~0.07 cm2/Vs, and the threshold voltage is -3.3 V ~ -8.8 V. The on- and off-state currents ratio is about 103~106. From the OTFT device and inverter circuit measurement, we observed hysteresis behavior was caused by interface states of between the gate insulator and the pentacene semiconductor layer.


Author(s):  
Long-long Chen ◽  
Xiang Sun ◽  
Ji-feng Shi ◽  
Xi-feng Li ◽  
Xing-wei Ding ◽  
...  

Thin film transistors (TFTs) using In-Ga-Zn Oxide (IGZO) as active layer and the gate insulator was treated with NH3 plasma and N2O plasma, respectively, which is fabricated on flexible PI substrate in this work. The performance of IGZO TFTs with different plasma species and treatment time are investigated and compared. The experiment results show that the plasma species and treatment time play an important role in the threshold voltage, field-effect mobility, Ion/Ioff ratio, sub-threshold swing (SS) and bias stress stability of the devices. The TFT with a 10 seconds NH3 plasma treatment shows the best performance; specifically, threshold voltage of 0.34 V, field-effect mobility of 15.97 cm2/Vs, Ion/Ioff ratio of 6.33×107, and sub-threshold swing of 0.36 V/dec. The proposed flexible IGZO-TFTs in this paper can be used as driving devices in the next-generation flexible displays.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 955 ◽  
Author(s):  
Hyunjae Lee ◽  
Seunghyun Ha ◽  
Jin-Hyuk Bae ◽  
In-Man Kang ◽  
Kwangeun Kim ◽  
...  

The effect of annealing ambient on SnO2 thin-film transistors (TFTs) fabricated via an ethanol-based sol-gel route was investigated. The annealing ambient has a significant effect on the structural characteristics and chemical composition and, in turn, the device performance. Although the crystalline-grain size of the SnO2 films annealed in air was the smallest, this size yielded the highest field-effect mobility. Compared with the minimization of boundary scattering via crystalline-size increase, augmentation of the free carrier concentration played a more critical role in the realization of high-performance devices. The fabricated SnO2 TFTs delivered a field-effect mobility, subthreshold swing, and on/off current ratio of 10.87 cm2/Vs, 0.87 V/decade, and 107, respectively.


2021 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Poreddy Manojreddy ◽  
Srikanth Itapu ◽  
Jammalamadaka Krishna Ravali ◽  
Selvendran Sakkarai

We utilized laser irradiation as a potential technique in tuning the electrical performance of NiOx/SiO2 thin film transistors (TFTs). By optimizing the laser fluence and the number of laser pulses, the TFT performance was evaluated in terms of mobility, threshold voltage, on/off current ratio and subthreshold swing, all of which were derived from the transfer and output characteristics. The 500 laser pulses-irradiated NiOx/SiO2 TFT exhibited an enhanced mobility of 3 cm2/V-s from a value of 1.25 cm2/V-s for as-deposited NiOx/SiO2 TFT, subthreshold swing of 0.65 V/decade, on/off current ratio of 6.5 × 104 and threshold voltage of −12.2 V. The concentration of defect gap states as a result of light absorption processes explains the enhanced performance of laser-irradiated NiOx. Additionally, laser irradiation results in complex thermal and photo thermal changes, thus resulting in an enhanced electrical performance of the p-type NiOx/SiO2 TFT structure.


2002 ◽  
Vol 736 ◽  
Author(s):  
Sung Kyu Park ◽  
Jeong In Han ◽  
Dae Gyu Moon ◽  
Won Keun Kim ◽  
Yong Hoon Kim

ABSTRACTHigh performance poly (3-hexylthiophene) (P3HT) thin film transistors (TFTs) array was fabricated on a polycarbonate substrate by micro-contact printing method. A thin polyimide layer (40 nm) was applied before silicon oxide deposition to improve the electrical properties of the TFT device. Also, the effects of O2 plasma treatment on the field effect mobility and output current behaviors of the devices were investigated. By plasma treatment, the surface roughness of gate dielectric was improved which accounts for the increased field effect mobility and the hole Schottky barrier height in electrode/semiconductor interface was lowered resulting in large drain current in the device. Based on the experiments, we fabricated P3HT TFTs array with 0.025 cm2/V·s in saturation field effect mobility and on/off current ratio of 103 ∼ 104 on a polycarbonate substrate.


2014 ◽  
Vol 104 (23) ◽  
pp. 233306 ◽  
Author(s):  
Kenji Kotsuki ◽  
Hiroshige Tanaka ◽  
Seiji Obata ◽  
Sven Stauss ◽  
Kazuo Terashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document