Synthesis of Hydroxyapatite – Hyaluronic acid Nano Composite Sol under Well-Controlled Condition

2003 ◽  
Vol 788 ◽  
Author(s):  
Yuko Ishikawa ◽  
Mamoru Senna

ABSTRACTHydroxyapatite (HAp) – Hyaluronic acid (HYA) nano composite sol was prepared at room temperature, at pH 8, by a coprecipitation method from CaCl2 or Ca(CH3COO)2 and H3PO4. These soluble Ca sources were used in order to increase the number of nucleation sites for HAp on HYA. Starting materials were supplied by two kinds of processes to give solution(s) of only PO43- or, PO43- and Ca2+ simultaneously into HYA solution containing Ca2+. Morphology of the aggregates and crystallite size as well as lattice parameters of the HAp were examined by TEM and XRD data with Rietveld refinement. We observed needle like aggregates of crystallites of HAp. Supplying methods of Ca sources controlled the aspect ratio of the aggregates and HAp crystallite. Lattice parameters of the samples prepared from CaCl2 shifted towards those of chloroapatite. Those from Ca(CH3COO)2, however, correspond to the literature values of single crystal HAp. The results of FT-IR spectra and the changes of rheological property indicate the electrostatic interactions between negatively charged functional groups of HYA and HAp.

2013 ◽  
Vol 829 ◽  
pp. 784-789 ◽  
Author(s):  
Mahmoud Zolfaghari ◽  
Mahshid Chireh

ZnO belongs to the II-VI semiconductor group with a direct band-gap of 3.2-3.37 eV in 300K and a high exciton binding energy of 60 meV. It has good transparency, high electron mobility, wide, and strong room-temperature luminescence. These properties have many applications in a wide area of emerging applications. Doping ZnO with the transition metals gives it magnetic property at room temperature hence making it multifunctional material, i.e. coexistence of magnetic, semiconducting and optical properties. The samples can be synthesized in the bulk, thin film, and nanoforms which show a wide range of ferromagnetism properties. Ferromagnetic semiconductors are important materials for spintronic and nonvolatile memory storage applications. Doping of transition metal elements into ZnO offers a feasible means of tailoring the band gap to use it as light emitters and UV detector. As there are controversial on the energy gap value due to change of lattice parameters we have synthesized Mn-doped ZnO nanoparticles by co-precipitation method with different concentrations to study the effect of lattice parameters changes on gap energy. The doped samples were studied by XRD, SEM, FT-IR., and UV-Vis. The XRD patterns confirm doping of Mn into ZnO structure. As Mn concentrations increases the peak due to of Mn impurity in FT-IR spectra becomes more pronounces hence confirming concentrations variation. We find from UV-Vis spectra that the gap energy due to doping concentration increases due to the Goldschmidt-Pauling rule this increase depends on dopant concentrations and increases as impurity amount increases.


2006 ◽  
Vol 4 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Georgi Chernev ◽  
Bisserka Samuneva ◽  
Petar Djambaski ◽  
Isabel Salvado ◽  
Helena Fernandes

AbstractIn this work we present experimental results about the formation, properties and structure of sol — gel silica based biocomposite containing Calcium alginate as an organic compound. Two different types of silicon precursors have been used in the synthesis: tetramethylortosilicate (TMOS) and ethyltrimethoxysilane (ETMS). The samples have been prepared at room temperature. The hybrids have been synthesized by replacing different quantitis of the inorganic precursor with alginate. The structure of the obtained hybrid materials has been studied by XRD, IR Spectroscopy, EDS, BET and AFM. The results proved that all samples are amorphous possessing a surface area from 70 to 290 m2/g. It has also been established by FT IR spectra that the hybrids containing TMOS display Van der Walls and Hydrogen bonding or electrostatic interactions between the organic and inorganic components. Strong chemical bonds between the inorganic and organic components in the samples with ETMS are present. A self-organized nanostructure has been observed by AFM. In the obtained hybrids the nanobuilding blocks average in size at about 8–14 nm for the particles.


2015 ◽  
Vol 30 ◽  
pp. 96-105
Author(s):  
V. Andal ◽  
G. Buvaneswari

Surfactant assisted synthetic route was followed to prepare silver selenide (β-Ag2Se) nanoparticles. The effect of three different surfactants viz., Triton X100, SDS and CTAB in the formation of silver selenide nanoparticles had been examined. Pure and crystalline β-Ag2Se nanophase was obtained in the presence of Triton X100 and SDS. However, the presence of CTAB leads to metallic silver formation. Nano Composite of β-Ag2Se and ZnS was fabricated in the presence of glycine as a molecular linker. The products were characterized by different techniques such as XRD, FT-IR, SEM and TEM. Room temperature photoluminescence spectrum of the ZnS/ β-Ag2Se nanocomposite exhibited two emission peaks at around 286 nm and 392 nm with enhanced intensity (lex= 250 nm).


2018 ◽  
Author(s):  
Koen Vercruysse ◽  
Margaret M. Whalen

<p>This report is a continuation of previous research on the H<sub>2</sub>O<sub>2</sub>-mediated synthesis of melanin-like pigments. We synthesized and characterized L-DOPA-based pigments using air- or H<sub>2</sub>O<sub>2</sub>-mediated<sub> </sub>oxidation. We compared their physic-chemical properties and evaluated their capacity to affect the interleukin release from immune cells. The use of higher concentrations of H<sub>2</sub>O<sub>2</sub> resulted in melanin-like materials with a distinct chemical signature in their FT-IR spectra and a lighter color. All pigments enhanced the interleukin release from immune cells. The possibility that lighter-colored melanins can be generated is discussed in the context of the importance of melanin-based pigmentation in human physiology.</p>


1987 ◽  
Vol 52 (5) ◽  
pp. 1356-1361
Author(s):  
S. Abdel Rahman ◽  
M. Elsafty ◽  
A. Hattaba

The conformation of elastin-like peptides Boc-Ala-Pro-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM were examined in solution using circular dichroism at 30 °C, 50 °C, and 70 °C and in solid state by IR at room temperature. The studies show that the β-turn is a significant conformational feature for peptides under investigation in solution at 30 °C and 50 °C, but at 70 °C the tetra, hexa, and decapeptides show the CD feature characteristic of the β-structure while the dodecapeptide spectra show the presence of β-turn which indicates the stability of the β-turn at this chain length. The IR spectra show that in the solid state at room temperature all investigated peptides assume essentially a β-turn except the tetrapeptide which present evidence of antiparallel β-structure. The β-turn contribution in the IR spectra increases with the increase of the chain length of the peptide.


2014 ◽  
Vol 70 (9) ◽  
pp. i46-i46 ◽  
Author(s):  
Matthias Weil ◽  
Thomas Häusler

The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium trithiocyanatomercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952).Zh. Fiz. Khim.26, 469–478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg—S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg2+cation is surrounded by four S atoms in a seesaw shape [S—Hg—S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting1∞[HgS2/1S2/2] chains are also part of SCN−anions that link these chains with the K+cations into a three-dimensional network. The K—N bond lengths of the distorted KN7polyhedra lie between 2.926 (2) and 3.051 (3) Å.


Author(s):  
Anna Wójtowicz ◽  
Agata Mitura ◽  
Renata Wietecha-Posłuszny ◽  
Rafał Kurczab ◽  
Marcin Zawadzki

AbstractVitreous humor (VH) is an alternative biological matrix with a great advantage of longer availability for analysis due to the lack of many enzymes. The use of VH in forensic toxicology may have an added benefit, however, this application requires rapid, simple, non-destructive, and relatively portable analytical analysis methods. These requirements may be met by Fourier transform infrared spectroscopy technique (FT-IR) equipped with attenuated total reflection accessory (ATR). FT-IR spectra of vitreous humor samples, deposited on glass slides, were collected and subsequent chemometric data analysis by means of Hierarchical Cluster Analysis and Principal Component Analysis was conducted. Differences between animal and human VH samples and human VH samples stored for diverse periods of time were detected. A kinetic study of changes in the VH composition up to 2 weeks showed the distinction of FT-IR spectra collected on the 1st and 14th day of storage. In addition, data obtained for the most recent human vitreous humor samples—collected 3 and 2 years before the study, presented successful discrimination of all time points studied. The method introduced was unable to detect mephedrone addition to VH in the concentration of 10 µg/cm3. Graphic abstract


SynOpen ◽  
2021 ◽  
Author(s):  
Mina Ghassemi ◽  
Ali Maleki

Copper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition method and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde and a β-ketoester in ethanol at room temperature. Then it was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM) images, thermo gravimetric and differential thermo gravimetric (TGA/DTG) analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, no use of eternal energy source and using a green solvent provide benign, mild, and environmentally friendly reaction conditions; as well, ease of catalyst recovering, catalyst recyclability, no use of column chromatography and good to excellent yields are extra advantages of this work.


Sign in / Sign up

Export Citation Format

Share Document