Analysis of a Rapidly Solidified High-Phosphorus Austenitic Steel Containing an Amorphous Phase

1981 ◽  
Vol 8 ◽  
Author(s):  
T. F. Kelly ◽  
G. B. Olson ◽  
J. B. Vander Sande

ABSTRACTRapid solidification of a high-phosphorus austenitic steel produces a fine cellular solidification structure containing an amorphous phase at the cell walls. The amorphous phase, which is stable to ∼500°C, is enriched in phosphorus and chromium, but contains significantly less phosphorus than conventional glass-forming alloys. Hot consolidation of powders produces a chemically-uniform metastable austenite which can be effectively precipitation hardened by phospho-carbides.

2016 ◽  
Vol 879 ◽  
pp. 1350-1354 ◽  
Author(s):  
Takeshi Nagase ◽  
Mamoru Takemura ◽  
Mitsuaki Matsumuro

The microstructure of rapidly solidified melt-spun ribbon in AlCoCrFeNi2.1 eutectic high entropy alloys (EHEAs) was investigated for clarifying the effect of rapid solidification on the constituent phases and microstructure of specimens formed through solidification. XRD analysis indicates that the melt-spun ribbons were composed of a mixture of fcc and bcc phases. The rapidly solidified melt-spun ribbon shows a fine poly-crystalline structure with fcc matrix phase and crystalline precipitates in the grain boundary, indicating that the solidification structure in the melt-spun ribbon was significantly different from that obtained by conventional casting processes.


1981 ◽  
Vol 8 ◽  
Author(s):  
Thomas F. Kelly ◽  
John B. Vander Sande ◽  
Morris Cohen

ABSTRACTThe microstructures and local composition variations in centrifugally atomized high-sulfur stainless steel powder are investigated. Both fcc and bcc are found to be primary solidification phases in the as-solidified powder of this nominally austenitic steel where the smaller powder particles (≲ 70 micron diameter) tend to be bcc.Cellular solidification structures, with sulfide precipitates (100 to 200 nm diameter in size) at the cell walls, are observed in both fcc and bcc particles. The bcc structure, however, has many small sulfide precipitates (10 to 20 nm diameter) in the cell interior with few larger sulfide precipitates at the cell walls. The small precipitates, observed only in the bcc structures, form on cooling from a supersaturated solid solution that results from reduced solute partitioning during solidification. Partitioning of chromium and nickel is minimal in these cellular structures. A non-cellular bcc structure is also observed with small sulfide precipitates throughoutthe entire structure. This non-cellular bcc structure results from smooth-front massive solidification. Analysis of the nucleation process for solidification indicates that a transition from fcc nucleation to bcc nucleation occurs with increasing wetting angle in heterogeneous nucleation. Thus bcc should nucleate in the smaller droplets of a liquid dispersion where catalytic surfaces of low potentcy (large wetting angle) tend to be the only heterogeneous nucleants available.


1990 ◽  
Vol 213 ◽  
Author(s):  
Ken Yasuda ◽  
Tetsuo Fujiwara ◽  
Hideyo Kodama ◽  
Masateru Suwa

ABSTRACTNb-Al and Nb-Al-X(X is Cr,Ti or Zr) ternary alloys ribbons, with compositions around the A15 (Nb3Al) structure, a candidate intermetallic as an advanced high temperature material, were rapidly solidified by an arc melt spin process. The rapid solidification structure of these tri-niobium aluminide alloys and the relationship between formed phases and compositions of ribbons are investigated.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012005
Author(s):  
H An ◽  
N J Siambun ◽  
B L Chua ◽  
M J H Gan

Abstract Microstructure and microtexture of rapidly solidified undercooled Ni-Cu alloys were investigated. The characteristic undercooling of Ni80Cu20 alloy was determined as 45K, 90K and 160K. Dendrite deformation due to rapid solidification led to strong deformation microtexture. Due to recrystallization upon annealing after recalescence, many subgrains were formed in the microstructure. Further, annealing the quenched alloy at 900°, new microtextures and subgrains were formed, which was due to recrystallization and dislocation network rearrangement. The results of comparative experiment proved the recrystallization mechanism of the microstructure refinement in the non-equilibrium solidification structure of the undercooled binary alloy


Author(s):  
N. Qiu ◽  
J. E. Wittig

PtCo hard magnets have specialized applications owing to their relatively high coercivity combined with corrosion resistance and ductility. Increased intrinsic coercivity has been recently obtained by rapid solidification processing of PtCo alloys containing boron. After rapid solidification by double anvil splat quenching and subsequent annealing for 30 minutes at 650°C, an alloy with composition Pt42Co45B13 (at.%) exhibited intrinsic coercivity up to 14kOe. This represents a significant improvement compared to the average coercivities in conventional binary PtCo alloys of 5 to 8 kOe.Rapidly solidified specimens of Pt42Co45B13 (at.%) were annealed at 650°C and 800°C for 30 minutes. The magnetic behavior was characterized by measuring the coercive force (Hc). Samples for TEM analysis were mechanically thinned to 100 μm, dimpled to about 30 nm, and ion milled to electron transparency in a Gatan Duomill at 5 kV and 1 mA gun current. The incident ion beam angle was set at 15° and the samples were liquid nitrogen cooled during milling. These samples were analyzed with a Philips CM20T TEM/STEM operated at 200 kV.


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Author(s):  
J. E. O’Neal ◽  
K. K. Sankaran ◽  
S. M. L. Sastry

Rapid solidification of a molten, multicomponent alloy against a metallic substrate promotes greater microstructural homogeneity and greater solid solubility of alloying elements than can be achieved by slower-cooling casting methods. The supersaturated solid solutions produced by rapid solidification can be subsequently annealed to precipitate, by controlled phase decomposition, uniform 10-100 nm precipitates or dispersoids. TEM studies were made of the precipitation of metastable Al3Li(δ’) and equilibrium AL3H phases and the deformation characteristics of a rapidly solidified Al-3Li-0.2Ti alloy.


1996 ◽  
Vol 455 ◽  
Author(s):  
J. J. Suñol ◽  
M. T. Clavaguera-Mora ◽  
N. Clavaguera ◽  
T. Pradell

ABSTRACTMechanical alloying and rapid solidification are two important routes to obtain glassy alloys. New Fe-Ni based metal-metalloid (P-Si) alloys prepared by these two different processing routes were studied by differential scanning calorimetry and transmission Mössbauer spectroscopy. Mechanical alloyed samples were prepared with elemental precursors, and different nominal compositions. Rapidly solidified alloys were obtained by melt-spinning. The structural analyses show that, independent of the composition, the materials obtained by mechanical alloying are not completely disordered whereas fully amorphous alloys were obtained by rapid solidification. Consequently, the thermal stability of mechanically alloyed samples is lower than that of the analogous material prepared by rapid solidification. The P/Si ratio controls the magnetic interaction of the glassy ribbons obtained by rapid solidification. The experimental results are discussed in terms of the degree of amorphization and crystallization versus processing route and P/Si ratio content.


1998 ◽  
Vol 4 (S2) ◽  
pp. 98-99
Author(s):  
D. H. Ping ◽  
K. Hono ◽  
A. Inoue

Recently, Inoue et al. succeeded in fabricating ultrahigh-strength Al-based alloys consisting of a nanoscale mixture of α-Al and amorphous phases or a mixture of a-Al, amorphous and icosahedral phases in Al-TM-Ce, Al-TM-Ln (TM: transition metals) and Al-Cr-Co-Ce systems by rapid solidification [1-3]. In order to understand the mechanism of the nanoscale microstructural evolution during the rapid solidification processes in these nanocomposite alloys, we have characterized the microstructures of rapidly solidified Al94.5Cr3Co1.5Ce1 and Al96V4Fe2 alloys by atom probe field ion microscopy (APFIM) and high resolution transmission electron microscopy (HREM).TEM investigations have revealed that the as-quenched Al94.5Cr3Co1.5Ce1 alloy is composed of a nanoscale mixture of amorphous and α-Al. A typical TEM bright field micrograph is shown in Fig. 1. The microdiffraction patterns taken at various locations in the darkly contrasted region have shown that the region consists of a few interconnected α-Al grains and many localized amorphous regions which are trapped within the Al grains.


1996 ◽  
Vol 100 (20) ◽  
pp. 8518-8526 ◽  
Author(s):  
Itai Cohen ◽  
Alice Ha ◽  
Xiaolin Zhao ◽  
Michelle Lee ◽  
Thomas Fischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document