Dynamics of Rapid Solidification in Silicon

1986 ◽  
Vol 80 ◽  
Author(s):  
P. S. Peercy ◽  
Michael O. Thompson ◽  
J. Y. Tsao

AbstractReal-time techniques were used to study rapid melt and solidification dynamics in silicon. In crystalline Si, the interface response function was characterized and found to be asymmetric for large deviations from the melting temperature, which will require reevaluation of conventional transition state treatments of melt and solidification. In amorphous Si, the mechanism of explosive crystallization was studied. The explosive transformation is mediated by a buried liquid layer, and detailed measurements have led to the suggestion that polycrystalline Si nucleates at the moving liquid-amorphous interface. For certain conditions, this process could yield fine-grained polycrystalline Si; for other conditions it permits epitaxial regrowth from the underlying crystalline Si for maximum melt thickness much less than the original amorphous layer thickness.

1986 ◽  
Vol 74 ◽  
Author(s):  
P. S. Peercy ◽  
Michael O. Thompson ◽  
J. Y. Tsao

AbstractReal-time techniques were used to study rapid melt and solidification dynamics in silicon. In crystalline Si, the interface response function was characterized and found to be asymmetric for large deviations from the melting temperature, which will require reevaluation of conventional transition state treatments of melt and solidification. In amorphous Si, the mechanism of explosive crystallization was studied. The explosive transformation is mediated by a buried liquid layer, and detailed measurements have led to the suggestion that polycrystalline Si nucleates at the moving liquid-amorphous interface. For certain conditions, this process could yield fine-grained polycrystalline Si; for other conditions it permits epitaxial regrowth from the underlying crystalline Si for maximum melt thickness much less than the original amorphous layer thickness.


1985 ◽  
Vol 57 ◽  
Author(s):  
J. M. Poate ◽  
P. S. Peercy ◽  
M. O. Thompson

AbstractThe prediction by Turnbull and his colleagues that amorphous Si and Ge undergo first order melting transitions at temperatures Taℓ substantially beneath the crystalline melting temperature Tcℓ has stimulated much work. Structural, calorimet:ic and transient conductance measurements show that, for Si, Tcℓ – Taℓ lies in the range 225–250°K. Studies of the pulsed laser melting of the Si amorphous-liquid transition have resulted in the following findings, an estimate of the undercooling rate of 15°K/m/sec, an understanding of the mechanism mediating explosive crystallization, the formation of internal melts and segregation of dopants at the liquid-amorphous interface.


1989 ◽  
Vol 147 ◽  
Author(s):  
P. A. Stolk ◽  
A. Polman ◽  
W. C. Sinke

Abstract420 nm thick amorphous Si layers buried in a Si (100) or Si (111) matrix, produced by 350 keV Si-implantation, were irradiated using a pulsed ruby laser. Time-resolved reflectivity measurements show that melting can be initiated buried in the samples at the crystalline-amorphous interface. Melting is immediately followed by explosive crystallization of the buried amorphous layer, which is started from the crystalline top layer. The velocity of this self-sustained crystallization process is determined to be 15.0 ± 0.5 m/s for Si (100) and 14.0 ± 0.5 m/s for Si (111). RBS and cross-section TEM reveal that epitaxially grown crystalline Si, containing a high density of twin defects, is formed in both the Si (100) and the Si (111) sample.


1996 ◽  
Vol 427 ◽  
Author(s):  
Hyeongtag Jeon ◽  
Sukjae Lee ◽  
Hwackjoo Lee ◽  
Hyun Ruh

AbstractTwo different Si(100) substrates, the 4°off-axis and the on-axis Si(100), were prepared. Ti thin films were deposited in an e-beam evaporation system and the amorphous layers of Ti-silicide were formed at different annealing temperatures. The Si(100) substrates before Ti film deposition were examined with AFM to verify the atomic scale roughness of the initial Si substrates. The amorphous layer was observed by HRTEM and TEM. And the chemical analysis and phase identification were examined by AES and XRD. The Si(100) substrate after HF clean shows the atomic scale microroughness such as atomic steps and pits on the Si surface. The on-axis Si(100) substrate exhibits much rougher surface morphologies than those of the off-axis Si(100). These differences of atomic scale roughnesses of Si substrates result in the difference of the thicknesses of amorphous Ti-silicide layers. The amorphous layer thicknesses on the on-axis exhibit thicker than those of the off-axis Si(100) and these differences inamorphous layer thicknesses became decreased as annealing temperatures increased. These indicate that the role of the atomic scale roughness on the amorphous layer thickness is much significant at low temperatures. In this study, the correlation between the atomic scale roughness and the amorphous layer thickness is discussed in terms of the atomic steps and pits based on the observation with using analysis tools such as AFM, TEM and HRTEM.


1981 ◽  
Vol 4 ◽  
Author(s):  
E. Fogarassy ◽  
R. Stuck ◽  
M. Toulemonde ◽  
P. Siffert ◽  
J.F. Morhange ◽  
...  

Arsenic doped amorphous silicon layers have been deposited on silicon single crystals by R.F.cathodic sputtering of a silicon target in a reactive argon-hydrogen mixture, and annealed with a Q-switched Ruby laser. Topographic analysis of the irradiated layers has shown the formation of a crater, due to an evaporation effect of material which could be related to the presence of a high concentration of Ar in the amorphous layer. RBS and Raman Spectroscopy showed that the remaining layer is not recrystallised probably due to inhibition by the residual hydrogen. However, it was found that arsenic diffuses into the monocrystalline substrate by laser induced diffusion of dopant from the surface solid source, leading to the formation of good quality P-N junctions.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 603
Author(s):  
Natalia Rońda ◽  
Krzysztof Grzelak ◽  
Marek Polański ◽  
Julita Dworecka-Wójcik

This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.


1987 ◽  
Vol 2 (5) ◽  
pp. 648-680 ◽  
Author(s):  
D. H. Lowndes ◽  
S. J. Pennycook ◽  
G. E. Jellison ◽  
S. P. Withrow ◽  
D. N. Mashburn

Nanosecond resolution time-resolved visible (632.8 nm) and infrared (1152 nm) reflectivity measurements, together with structural and Z-contrast transmission electron microscope (TEM) imaging, have been used to study pulsed laser melting and subsequent solidification of thick (190–410 nm) amorphous (a) Si layers produced by ion implantation. Melting was initiated using a KrF (248 nm) excimer laser of relatively long [45 ns full width half maximum (FWHM)] pulse duration; the microstructural and time-resolved measurements cover the entire energy density (E1) range from the onset of melting (at ∼ 0.12J/cm2) up to the onset of epitaxial regrowth (at ∼ 1.1 J/cm2). At low E1 the infrared reflectivity measurements were used to determine the time of formation, the velocity, and the final depth of “explosively” propagating buried liquid layers in 410 nm thick a-Si specimens that had been uniformly implanted with Si, Ge, or Cu over their upper ∼ 300 nm. Measured velocities lie in the 8–14 m/s range, with generally higher velocities obtained for the Ge- and Cu-implanted “a-Si alloys.” The velocity measurements result in an upper limit of 17 (± 3) K on the undercooling versus velocity relationship for an undercooled solidfying liquid-crystalline Si interface. The Z-contrast scanning TEM measurements of the final buried layer depth were in excellent agreement with the optical measurements. The TEM study also shows that the “fine-grained polycrystalline Si” region produced by explosive crystallization of a-Si actually contains large numbers of disk-shaped Si flakes that can be seen only in plan view. These Si flakes have highly amorphous centers and laterally increasing crystallinity; they apparently grow primarily in the lateral direction. Flakes having this structure were found both at the surface, at low laser E1, and also deep beneath the surface, throughout the “fine-grained poly-Si” region formed by explosive crystallization, at higher E1. Our conclusion that this region is partially amorphous (the centers of flakes) differs from earlier results. The combined structural and optical measurements suggest that Si flakes nucleate at the undercooled liquid-amorphous interface and are the crystallization events that initiate explosive crystallization. Time-resolved reflectivity measurements reveal that the surface melt duration of the 410 nm thick a-Si specimens increases rapidly for 0.3E1 <0.6 J/cm2, but then remains nearly constant for E1 up to ∼ 1.0 J/cm2. For 0.3 < E1 < 0.6 J/cm2 the reflectivity exhibits a slowly decaying behavior as the near-surface pool of liquid Si fills up with growing large grains of Si. For higher E1, a flat-topped reflectivity signal is obtained and the microstructural and optical studies together show that the principal process occurring is increasingly deep melting followed by more uniform regrowth of large grains back to the surface. However, cross-section TEM shows that a thin layer of fine-grained poly-Si still is formed deep beneath the surface for E1<0.9 J/cm2, implying that explosive crystallization occurs (probably early in the laser pulse) even at these high E1 values. The onset of epitaxial regrowth at E1 = 1.1 J/cm2 is marked by a slight decrease in surface melt duration.


1984 ◽  
Vol 35 ◽  
Author(s):  
P.S. Peercy ◽  
Michael O. Thompson

ABSTRACTSimultaneous measurements of the transient conductance and time-dependent surface reflectance of the melt and solidification dynamics produced by pulsed laser irradiation of Si are reviewed. These measurements demonstrate that the melting temperature of amorphous Si is reduced 200 ± 50 K from that of crystalline Si and that explosive crystallization in amorphous Si is mediated by a thin (≤ 20 nm) molten layer that propagates at ~ 15 m/sec. Studies with 3.5 nsec pulses permit an estimate of the dependence of the solidification velocity on undercooling. Measurements of the effect of As impurities on the solidification velocity demonstrate that high As concentrations decrease the melting temperature of Si (~ 150 K for 7 at.%), which can result in surface nucleation to produce buried melts. Finally, the silicon-germanium alloy system is shown to be an ideal model system for the study of superheating and undercooling. The Si50Ge50 alloy closely models amorphous Si, and measurements of layered Si-Ge alloy structures indicate superheating up to 120 K without nucleation of internal melts. The change in melt velocity with superheating yields a velocity versus superheating of 17 ± 3 k/m/sec.


1989 ◽  
Vol 157 ◽  
Author(s):  
W. Marine ◽  
J. Marfaing

ABSTRACTThe structure and morphologies of the thin amorphous a-Si and oc-Ge films crystallized “in situ” in an electronic microscope by pulsed YAG laser have been studied using conventional and high-resolution transmission electronic microscopy observations. It is found that the laser induced nucleation rate (I) is laser pulse length dependent. I is about 1021-1022 cm−3 s−1 (α-Si) and 1023-1025 cm−3 s−1 (α-Ge) near the melting point. Explosive dendritic formation is the result of competition between solid state light induced nucleation and melting mediated explosive growth.


Sign in / Sign up

Export Citation Format

Share Document