Phase Relations and Chemical Durability of Ceramics in the Pseudo-Binary System: CaZrTi2O7–GdAlO3

2003 ◽  
Vol 807 ◽  
Author(s):  
N. P. Mikhailenko ◽  
A. V. Ochkin ◽  
S. V. Stefanovsky ◽  
O. I. Kirjanova

ABSTRACTPhase relations in a pseudo-binary system (1-x) CaZrTi2O7- x GdAlO3 suggested for immobilization of a zirconium - rare earth – actinide fraction of high level waste were studied with X-ray diffraction and electron microscopy. Zirconolite and perovskite were found to be major phases in the ceramic samples prepared by cold pressing and sintering at 1400 and 1500 °C. At relatively low perovskite content (x < 0.5) zirconolite is the major host for Gd, which is considered as a trivalent surrogate for Am and Cm. At higher perovskite content, perovskite becomes the major host for Gd. Zirconolite is the major host phase for corrosion products (Al, Fe, Ti, Zr). Leach rates of Gd, 238Pu, and 241Am from the ceramics studied are 10−4–10−5 g/(m2d).


2004 ◽  
Vol 824 ◽  
Author(s):  
A.V. Ochkin ◽  
S.V. Stefanovsky ◽  
A.G. Ptashkin ◽  
N.S. Mikhailenko ◽  
O.I. Kirjanova

AbstractTwo ceramics for immobilization of a Zr-REE-actinide fraction of high level waste (HLW) based on zirconolite or/and pyrochlore structures with minor brannerite/lucasite, and fluorite-structured dioxide-based solid solution, were synthesized and characterized. The samples were produced by melting of oxide mixtures at 1500 °C followed by controlled cooling for crystallization. Phase compositions of the samples obtained and waste elements partitioning among co-existing phases were investigated in detail using powder X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy. Cerium enters cerianite-based solid solution, lucasite (if present), and to a lesser extent, pyrochlore and zirconolite. Europium and gadolinium enter predominantly zirconolite and pyrochlore. The highest uranium concentrations were found in a uraninite-based cubic solid solution or pyrochlore and zirconolite.



2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Nayely Torres-Gómez ◽  
Osvaldo Nava ◽  
Liliana Argueta-Figueroa ◽  
René García-Contreras ◽  
Armando Baeza-Barrera ◽  
...  

In this work, we present a simple and efficient method for pure phase magnetite (Fe3O4) nanoparticle synthesis. The phase structure, particle shape, and size of the samples were characterized by Raman spectroscopy (Rm), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), and transmission electron microscopy (TEM). The morphology tuning was controlled by the temperature of the reaction; the nanoparticles were synthesized via the hydrothermal method at 120°C, 140°C, and 160°C, respectively. The Rm and XRD spectra showed that all the nanoparticles were Fe3O4 in a pure magnetite phase. The obtained nanoparticles exhibited a high level of crystallinity with uniform morphology at each temperature, as can be observed through TEM and SEM. These magnetic nanoparticles exhibited good saturation magnetization and the resulting shapes were quasi-spheres, octahedrons, and cubes. The samples showed striking magnetic properties, which were examined by a vibrating sample magnetometer (VSM). It has been possible to obtain a good morphological control of nanostructured magnetite in a simple, economical, and scalable method by adjusting the temperature, without the modification of any other synthesis parameter.



MRS Advances ◽  
2016 ◽  
Vol 2 (10) ◽  
pp. 549-555 ◽  
Author(s):  
José Marcial ◽  
Mostafa Ahmadzadeh ◽  
John S. McCloy

ABSTRACTCrystallization of aluminosilicates during the conversion of Hanford high-level waste (HLW) to glass is a function of the composition of the glass-forming melt. In high-sodium, high-aluminum waste streams, the crystallization of nepheline (NaAlSiO4) removes chemically durable glass-formers from the melt, leaving behind a residual melt that is enriched in less durable components, such as sodium and boron. We seek to further understand the effect of lithium, boron, and iron addition on the crystallization of model silicate glasses as analogues for the complex waste glass. Boron and iron behave as glass intermediates which allow for crystallization when present in low additions but frustrate crystallization in high additions. In this work, we seek to compare the average structures of quenched and heat treated glasses through Raman spectroscopy, X-ray diffraction, vibrating sample magnetometry, and X-ray pair distribution function analysis. The endmembers of this study are feldspathoid-like (LiAlSiO4, NaAlSiO4, NaBSiO4, and NaFeSiO4), pyroxene-like (LiAlSi2O6, NaAlSi2O6, NaBSi2O6, and NaFeSi2O6), and feldspar-like (LiAlSi3O8, NaAlSi3O8, NaBSi3O8, and NaFeSi3O8). Such a comparison will provide further insight on the complex relationship between the average chemical ordering and topology of glass on crystallization.



2010 ◽  
Vol 1265 ◽  
Author(s):  
Sergey Stefanovsky ◽  
Alexander Ptashkin ◽  
Oleg Knyazev ◽  
Olga Stefanovsky ◽  
James C Marra

AbstractSavannah River Site Defense Waste Processing Facility (DWPF) Sludge Batch 4 (SB4) high level waste (HLW) simulant at 55 wt % waste loading was produced in the demountable cold crucible and cooled to room temperature in the cold crucible. Appreciable losses of Cs, S and Cl took place during the melting. A second glass sample was subjected to canister centerline cooling (CCC) regime in an alumina crucible in a resistive furnace. X-ray diffraction (XRD) study showed that the glass blocks were composed of vitreous and spinel structure phases. No separate U-bearing phases were found.



2011 ◽  
Vol 284-286 ◽  
pp. 1397-1400
Author(s):  
Huai Yao ◽  
Yong Zhi Wang ◽  
Bo Xu

The high pressure and high temperature sintering of α-Si3N4 and γ-Si3N4 with Y2O3-Al2O3-La2O3 as additives were studied under pressures of 5.4 GPa and temperatures of 1420-1770 K. The effects of sintering temperatures and pressures on properties of sintered ceramic samples were investigated with X-ray diffraction and scanning electron microscopy. The results show that γ-Si3N4 and α-Si3N4 is transformed to β-Si3N4 completely. The highest relative densities and Vickers hardness (HV) of sintered samples are 98.71 and 21.76GPa, respectively. The sintered samples were composed of elongated β-Si3N4 rod crystals with disordered orientation and had intergranular interlocks and uniform and compact microstructure. Pulled out crystal grains on the fractured cross sections were obviously observed by SEM.



2007 ◽  
Vol 62 (12) ◽  
pp. 754-760
Author(s):  
Chao-Chen Yang ◽  
Min-Fong Shu

The electrochemical behaviour of zinc on copper, platinum, and tungsten working electrodes was investigated in a binary ZnCl2-DMSO2 room temperature molten salt electrolyte in the temperature range of 60 - 80◦C. Various over-potentials, −0.1, −0.2, −0.3, −0.4, and −0.5 V, were chosen as deposition potentials. The nucleation/growth of zinc changed from progressive to instantaneous if the over-potentials increased from low to high level. The surface morphology and crystal structure of the deposited layer were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Moreover, larger grain size and hexagonal close packing of the zinc layer at −0.5 V were observed by transmission electron microscopy (TEM) with electron diffraction mapping.



2011 ◽  
Vol 694 ◽  
pp. 249-255 ◽  
Author(s):  
Xue Song ◽  
Guang Cheng Yang ◽  
Fu De Nie

Nano energetic materials (nEMs) have improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study a micro fuse developed by intergrating Al/CuO-based nanoenergetic materials on a micro wire. CuO nanowires are synthesized by thermally annealing Cu film deposited onto a micro wire. Nano-Al is integrated with the nanowires by thermal to realize an Al/CuO based nEMs. It allows batch and high level of integration and reliability. The micro fuse is tested by open-air combustion testing and characterized by scanning electron microscopy, x-ray diffraction, differential thermal analysis and differential scanning calorimetry.



2010 ◽  
Vol 1265 ◽  
Author(s):  
Daniel Caurant ◽  
Nolwenn Chouard ◽  
Odile Majerus ◽  
Jean-Luc Dussossoy ◽  
Aurelien Ledieu ◽  
...  

AbstractThe impact of Nd2O3, MoO3 and RuO2 addition on the competition between the crystallization of apatite Ca2Nd8(SiO4)6O2 and powellite CaMoO4 phases which both may appear in High Level Waste nuclear glass (under certain specific conditions of cooling and glass composition) has been studied on a simplified composition belonging to the system SiO2-Na2O-CaO-Al2O3-B2O3. X-ray diffraction (at room temperature and high temperature) and scanning electron microscopy measurements have been performed on five glasses under two different thermal treatments. We show that RuO2 acts as a nucleating agent for apatite. Moreover, neodymium and molybdenum cations seem to be very close in the glassy network as Nd2O3 addition stops the phase separation of molybdates and inhibits the crystallization of CaMoO4. On the contrary, MoO3 seems to favor the crystallization of apatite. For several samples, the evolution of the distribution of Nd3+ cations after crystallization was followed by optical absorption spectroscopy.



2021 ◽  
Author(s):  
Rafika SOUAG ◽  
Nour elhayet KAMEL ◽  
Dalila Moudir ◽  
Yasmina MOUHEB ◽  
Fayrouz Aouchiche

Abstract This study focused on the effect of TiO 2 addition on the crystallines phases’ formation, structure and chemical durability of a nuclear glass ceramic constituted by an aluminosilicate glass in the system: SiO2-Al2O3-CaO-MgO-ZrO2-TiO2 . The materials with four contents of TiO2 , ranging from 4.11 to 7.11 wt.%, are synthesized by a discontinuous method,. For the whole of materials, X-ray diffraction analysis allow identifying an aluminosilicate belonging to pyroxenes silicates family as a main phase, powelite and calzirtite. Both SEM and DTAanalyses confirmed these results. The materials FTIR analysis reveals the glass ceramics complex chemical composition. MCC1 and MCC2 tests, performed on selected glass ceramic materials, indicate that the materials with 4.11 and 5.11 wt.% TiO2 are the most durable against Si, Al, Mg and Ce elements release, in MCC2 test; The results make conclusions valuable on the selection of such glass ceramics as candidate for the disposal of high-level waste.



1996 ◽  
Vol 465 ◽  
Author(s):  
H. Li ◽  
J. D. Vienna ◽  
P. Hrma ◽  
D. E. Smith ◽  
M. J. Schweiger

ABSTRACTThe impact of crystalline phase precipitation in glass during canister cooling on chemical durability of the waste form limits waste loading in glass, especially for vitrification of certain high-level waste (HLW) streams rich in Na2O and Al2O3. This study investigates compositional effects on nepheline precipitation in simulated Hanford HLW glasses during canister centerline cooling (CCC) heat treatment. It has been demonstrated that the nepheline primary phase field defined by the Na2O-Al2O3-SiO2 ternary system can be used as an indicator for screening HLW glass compositions that are prone to nepheline formation. Based on the CCC results, the component effects on increasing nepheline precipitation can be approximately ranked as Al2O3 > Na2O > Li2O ≈ K2O ≈ Fe2O3 > CaO > SiC2. The presence of nepheline in glass is usually detrimental to chemical durability. Using x-ray diffraction data in conjunction with a mass balance and a second-order mixture model for 7-day product consistency test (PCT) normalized B release, the effect of glass crystallization on glass durability can be predicted with an uncertainty less than 50% if the residual glass composition is within the range of the PCT model.



Sign in / Sign up

Export Citation Format

Share Document