The Role of Stress on the Shape of the Amorphous-Crystalline Interface and Mask-Edge Defect Formation in Ion-Implanted Silicon

2004 ◽  
Vol 810 ◽  
Author(s):  
Carrie E. Ross ◽  
Kevin S. Jones

ABSTRACTStress is known to affect the regrowth velocities during recrystallization of an amorphous layer. This study investigates how the stress from patterned structures alters regrowth and in turn affects defect formation. Prior to patterning, 80Å SiO2 and 1540Å of silicon nitride were deposited on a 200 mm [001] silicon wafer. A 40keV Si+ amorphizing implant at a dose of 1×1015 atoms/cm2 was then performed into the patterned wafer. The regrowth of the amorphous layer along the mask edge was studied by partially recrystallizing the layer for various times at 550°C both with the mask present and after etching off the oxide and nitride pads. A significant number of cross-sectional Transmission Electron Microscopy (TEM) samples were prepared and imaged. It was found that the stress from the patterned structures enhances the vertical and lateral regrowth velocities, as well as alters the shape of the amorphous-crystalline interface during regrowth. Previous studies have shown that uniaxial tensile stress increases the regrowth velocity. Simulations show that the region of interest in these samples is under tensile stresses, suggesting that this type of stress should accelerate the regrowth velocity. In addition dislocation half loops are observed to form along the mask edge for certain structures. The nucleation of these defects is suppressed by the presence of the film. The relationship between the stress from the patterned structures, the regrowth of the amorphous layer, and the formation of dislocation half-loops along the mask edge will be discussed.

1986 ◽  
Vol 71 ◽  
Author(s):  
S. Prussin ◽  
Kevin S. Jones

AbstractA series of 18 wafers were implanted with phosphorus ions covering an energy range of 25 to 180 keV at a dose of 1 × 1015 cm−2 using a Waycool end station which provides good contact between the wafers and a thermal sink. Half the wafers had {100} surfaces and the other half {111} surfaces. The morphology of the as-implanted surface, defined by the thickness of the amorphous layer and whether that layer was submerged or lay at the surface, was affected by implant energy and surface orientation. After a 550°C regrowth and an activation anneal of 30 minutes at 900°C, the defect structures were evaluated by plan and cross-sectional transmission electron microscopy. A dear correlation was found between the implant morphology, the wafer orientation, and the defect structures.


Author(s):  
C. Ewins ◽  
J.R. Fryer

The preparation of thin films of organic molecules is currently receiving much attention because of the need to produce good quality thin films for molecular electronics. We have produced thin films of the polycyclic aromatic, perylene C10H12 by evaporation under high vacuum onto a potassium chloride (KCl) substrate. The role of substrate temperature in determining the morphology and crystallography of the films was then investigated by transmission electron microscopy (TEM).The substrate studied was the (001) face of a freshly cleaved crystal of KCl. The temperature of the KCl was controlled by an electric heater or a cold finger. The KCl was heated to 200°C under a vacuum of 10-6 torr and allowed to cool to the desired temperature. The perylene was then evaporated over a period of one minute from a molybdenum boat at a distance of 10cm from the KCl. The perylene thin film was then backed with an amorphous layer of carbon and floated onto copper microscope grids.


2004 ◽  
Vol 810 ◽  
Author(s):  
Nina Burbure ◽  
Kevin S. Jones

ABSTRACTPattern induced defects during advanced CMOS processing can lead to lower quality devices with high leakage currents. Within this study, the effects of oxide trenches on implant related defect formation and evolution in silicon patterned wafers is examined. Oxide filled trenches approximately 4000Å deep were patterned into 300 mm <100> silicon wafers. Patterning was followed by ion implantation of Si+ at energies ranging from 10 to 80 keV. Samples were amorphized with doses of 1×1015 atoms/cm2, 5×1015 atoms/cm2, and 1×1016 atoms/cm2. Two independent repeating structures were studied. The first structure is comprised of silicon oxide filled trench lines, 3.7μm wide spaced 12.5μm apart, while the second structure contains silicon squares, 0.6μm on a side, surrounded by a silicon oxide filled trench. Cross- sectional and planar view transmission electron microscopy (TEM) samples were used to examine the defect morphology after annealing at temperatures ranging from 700°C to 950°C and at times between 1 second and 1 minute. Following complete regrowth, an array of defects was observed to form near the surface at the silicon/silicon oxide interface. These trench edge defects appeared to nucleate at the amorphous-crystalline interface for all energies and doses studied. Upon a spike anneal at 700°C, it was observed that regrowth of the amorphous layer had completed except in the region near the trench edge. Thus, it is believed that this defect results from the pinning of the amorphous-crystalline interface along the trench edge during solid phase epitaxial regrowth (SPER).


2001 ◽  
Vol 686 ◽  
Author(s):  
Gleb N. Yushin ◽  
Scott D. Wolter ◽  
Alexander V. Kvit ◽  
Ramon Collazo ◽  
John T. Prater ◽  
...  

AbstractPolycrystalline diamond films previously grown on silicon were polished to an RMS roughness of 15 nm and bonded to the silicon in a dedicated ultrahigh vacuum bonding chamber. Successful bonding under a uniaxial mechanical stress of 32 MPa was observed at temperatures as low as 950°C. Scanning acoustic microscopy indicated complete bonding at fusion temperatures above 1150°C. Cross-sectional transmission electron microscopy later revealed a 30 nm thick intermediate amorphous layer consisting of silicon, carbon and oxygen.


2012 ◽  
Vol 18 (6) ◽  
pp. 1410-1418 ◽  
Author(s):  
Daniel K. Schreiber ◽  
Praneet Adusumilli ◽  
Eric R. Hemesath ◽  
David N. Seidman ◽  
Amanda K. Petford-Long ◽  
...  

AbstractA sample preparation method is described for enabling direct correlation of site-specific plan-view and cross-sectional transmission electron microscopy (TEM) analysis of individual nanostructures by employing a dual-beam focused-ion beam (FIB) microscope. This technique is demonstrated using Si nanowires dispersed on a TEM sample support (lacey carbon or Si-nitride). Individual nanowires are first imaged in the plan-view orientation to identify a region of interest; in this case, impurity atoms distributed at crystalline defects that require further investigation in the cross-sectional orientation. Subsequently, the region of interest is capped with a series of ex situ and in situ deposited layers to protect the nanowire and facilitate site-specific lift-out and cross-sectioning using a dual-beam FIB microscope. The lift-out specimen is thinned to electron transparency with site-specific positioning to within ∼200 nm of a target position along the length of the nanowire. Using the described technique, it is possible to produce correlated plan-view and cross-sectional view lattice-resolved TEM images that enable a quasi-3D analysis of crystalline defect structures in a specific nanowire. While the current study is focused on nanowires, the procedure described herein is general for any electron-transparent sample and is broadly applicable for many nanostructures, such as nanowires, nanoparticles, patterned thin films, and devices.


2004 ◽  
Vol 810 ◽  
Author(s):  
J.M. Jacques ◽  
N. Burbure ◽  
K.S. Jones ◽  
M.E. Law ◽  
L.S. Robertson ◽  
...  

ABSTRACTIn prior works, we demonstrated the phenomenon of fluorine-enhanced boron diffusion within self-amorphized silicon. Present studies address the process dependencies of low temperature boron motion within ion implanted materials utilizing a germanium amorphization. Silicon wafers were preamorphized with either 60 keV or 80 keV Ge+ at a dose of 1×1015 atoms/cm2. Subsequent 500 eV, 1×1015 atoms/cm211B+ implants, as well as 6 keV F+ implants with doses ranging from 1×1014 atoms/cm2 to 5×1015 atoms/cm2 were also done. Furnace anneals were conducted at 550°C for 10 minutes under an inert N2 ambient. Secondary Ion Mass Spectroscopy (SIMS) was utilized to characterize the occurrence of boron diffusion within amorphous silicon at room temperature, as well as during the Solid Phase Epitaxial Regrowth (SPER) process. Amorphous layer depths were verified through Cross-Sectional Transmission Electron Microscopy (XTEM) and Variable Angle Spectroscopic Ellipsometry (VASE). Boron motion within as-implanted samples is observed at fluorine concentrations greater than 1×1020 atoms/cm3. The magnitude of the boron motion scales with increasing fluorine dose and concentration. During the initial stages of SPER, boron was observed to diffuse irrespective of the co-implanted fluorine dose. Fluorine enhanced diffusion at room temperature does not appear to follow the same process as the enhanced diffusion observed during the regrowth process.


2004 ◽  
Vol 810 ◽  
Author(s):  
R. T. Crosby ◽  
K. S. Jones ◽  
M. E. Law ◽  
A. F. Saavedra ◽  
J. L. Hansen ◽  
...  

ABSTRACTThe relaxation processes of strained silicon films on silicon-rich relaxed SiGe alloys have been studied. Experimental structures were generated via Molecular Beam Epitaxial (MBE) growth techniques and contain a strained silicon capping layer of approximately 50 nm. The relaxed SiGe alloy compositions range from 0 to 30 atomic% germanium. Samples received two distinct types of silicon implants. A 12 keV Si+ implant at a dose of 1×1015 atoms/cm2 was used to generate an amorphous layer strictly confined within the strained Si cap. An alternate 60 keV Si+ implant at a dose of 1×1015 atoms/cm2 was employed to create a continuous amorphous layer extending from the sample surface to a position 50 nm into the bulk SiGe material. The strain relaxation and regrowth processes are quantified through High Resolution X-Ray Diffraction (HRXRD) rocking curves and Cross-sectional Transmission Electron Microscopy (XTEM). The role of injected silicon interstitials upon the strain relaxation processes at the Si/SiGe interface after annealing at 600°C is investigated.


1989 ◽  
Vol 147 ◽  
Author(s):  
G. Ottaviani ◽  
F. Nava ◽  
R. Tonini ◽  
S. Frabboni ◽  
G. F. Cerofolini ◽  
...  

AbstractWe have performed a systematic investigation of boron implantation at 30 keV into <100> n-type silicon in the 77 –300 K temperature range and mostly at 9×1015 cm−2 fluence. The analyses have been performed with ion channeling and cross sectional transmission electron microscopy both in as-implanted samples and in samples annealed in vacuum furnace at 500 °C and 850 °C for 30 min. We confirm the impossibility of amorphization at room temperature and the presence of residual damage mainly located at the boron projected range. On the contrary, a continuous amorphous layer can be obtained for implants at 77 K and 193 K; the thickness of the implanted layer is increased by lowering the temperature, at the same time the amorphous-crystalline interface becomes sharper. Sheet resistance measurements performed after isochronal annealing shows an apparent reverse annealing of the dopant only in the sample implanted at 273 K. The striking differences between light and heavy ions observed at room temperature implantation disappears at 77 K and full recovery with no residual damage of the amorphous layer is observed.


1987 ◽  
Vol 65 (1) ◽  
pp. 13-15 ◽  
Author(s):  
H. Klimker ◽  
J. M. Perz ◽  
M. J. G. Lee

Simultaneous measurements of quantum oscillations in magnetostriction and torque in a single crystal of gold have been used to determine precise values for the derivatives of the cross-sectional area of the [111] neck of the Fermi surface with respect to uniaxial tensile stress along the [110] and [Formula: see text] directions. Independent estimates of the derivative with respect to uniaxial tensile stress along [111] of the neck area have been deduced from appropriate combinations of the [110] and [Formula: see text] stress derivatives with the established hydrostatic-pressure derivative. These estimates are in excellent agreement, giving ∂ lnA111/∂σ111 = (11.5 ± 0.3) × 10−12cm2∙dyn−1 (1 dyn = 10 μN). This result is significantly larger than the result of early direct-tension measurements in gold, suggesting that the latter suffered from systematic error. The present result is consistent with, and more precise than, earlier magnetostriction and direct uniaxial compression data. The angular shear derivative ∂ ln A/∂γ = 5.56 ± 0.17, deduced from the present data, is slightly larger than the theoretical value of 4.80 ± 0.20 obtained from a relativistic Korringa–Kohn–Rostoker phase-shift calculation based a rigid spherical muffin-tin pseudopotential.


1991 ◽  
Vol 235 ◽  
Author(s):  
YU. N. Erokhin ◽  
R. Grotzschel ◽  
S. R. Oktyabrski ◽  
S. Roorda ◽  
W. Sinke ◽  
...  

ABSTRACTThe interaction during low temperature thermal annealing of metal atoms from a Ni film evaporated on top of Si structures with a buried amorphous layer formed by ion implantation has been investigated. Rutherford Backscattering Spectrometry (RBS)/channeling, cross-sectional transmission electron microscopy (XTEM) and X-ray microanalysis were used to determine structures and compositions. It is shown that the combination of such silicon properties as the increased rate of silicidation reaction for amorphous silicon with respect to the crystalline one in combination with high metal atom diffusivity leads to formation of buried epitaxial Ni silicide islands at the interface between the amorphous and the top crystalline silicon layers. During thermal annealing at temperatures as low as 350° C, these islands move through the a-Si layer leaving behind epitaxially recrystallized Si.


Sign in / Sign up

Export Citation Format

Share Document