Low Hydrogen Concentration Silicon Nitride as a Gate Dielectric of TFTs for Flexible Display Application

2005 ◽  
Vol 862 ◽  
Author(s):  
Joong Hyun Park ◽  
Chang Yeon Kim ◽  
Kwang Sub Shin ◽  
Sang Geun Park ◽  
Min Koo Han

AbstractWe have proposed low hydrogen concentration (CH) silicon nitride (SiNX) as a dielectric for flexible display application. The fabrication temperature on plastic substrate is limited below Tg (glass transition temperature, typically 130˜180 °C) and it was reported that CH in thin film is strongly depends on fabrication temperature. As the fabrication temperature is decreasing, hydrogen concentration is increasing. SiNX deposited in ultra low temperature (< 150 °C) has high CH which is porous, low density. Our experimental results using SiH4, He, N2 gas mixture shows that in the SiNX CH is less than 15 at.%. Breakdown voltage of proposed SiNX dielectric is 5 MV/cm. In the wet etch rate test using a nitride etching solution, He dilution is more dense than NH3 dilution. This process approach is useful for flexible display application.

2001 ◽  
Vol 685 ◽  
Author(s):  
Denis Stryahilev ◽  
Andrei Sazonov ◽  
Arokia Nathan

AbstractThe effect of a-SiNx films stoichiometry and their physical properties on the electrical integrity and masking ability is studied. The films are deposited at 120° C by 13.56 MHz PECVD from SiH4+NH3 + N2 gas mixture. They have the N/Si ratio of 1.4 to 1.7 and hydrogen concentration of 25 to 40 at.%. The electrical characterization was carried out by I-V measurements. An electrical resistivity of ∼1016 Ohm-cm and breakdown voltage of 5.5 MV/cm have been achieved for our PECVD nitride films. The performance of a-Si:H TFTs with these silicon nitride as the gate dielectric and passivation layer has been also evaluated.


AIP Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 065012 ◽  
Author(s):  
J. Provine ◽  
Peter Schindler ◽  
Yongmin Kim ◽  
Steve P. Walch ◽  
Hyo Jin Kim ◽  
...  

1991 ◽  
Vol 219 ◽  
Author(s):  
J. H. Souk ◽  
G. N. Parsons ◽  
J. Batey

ABSTRACTAmorphous silicon nitride films deposited from a gas mixture of SiH4 and N2 with a large flow of He have shown many interesting characteristics. The films show a wide variety of electrical, optical, and mechanical properties with varying amounts of SiH4 and N2. The effect of N2 flow rate on film composition in N2-SiH4 processes is quite different from that of NH3 flow in NH3-SiH4 processes. The films were characterized by measurements of (1) Si-H and N-H bond density and bonded hydrogen content, both from infrared absorption, (2) Si/N ratio, (3) refractive index, (4) film stress, and (5) wet chemical etch rate and (6) electrical properties including current-voltage (I-V) and capacitance-voltage (C-V). We find that adding helium to the PECVD process enhances the incorporation of nitrogen in the film and an optimized flow of SiH4 improves the electrical properties. Films with optimum electrical properties with minimum charge trapping are obtained with N/Si ratio close to 1.33. These films have a small amount of Si-H and N-H bonds, and a low etch rate (> 100 A/min) in aqueous HF solution. The properties of these low temperature (250°C) PECVD nitrides have many similarities with LPCVD nitrides. Compared with films deposited from SiH4, NH3 mixture, these films exhibit very low wet etch rates and much lower H contents, but greater hysteresis in C-V characteristics.


2009 ◽  
Vol 30 (9) ◽  
pp. 096005 ◽  
Author(s):  
Tang Longjuan ◽  
Zhu Yinfang ◽  
Yang Jinling ◽  
Li Yan ◽  
Zhou Wei ◽  
...  

2002 ◽  
Vol 715 ◽  
Author(s):  
Albert Lee ◽  
Nagarajan Rajagopalan ◽  
Maggie Le ◽  
Bok Heon Kim ◽  
Hichem M'Saad

AbstractA Pecvd silicon nitride film, Damascene Nitride™, is deposited in a PECVD chamber with a hollow cathode faceplate using silane and ammonia as precursor gases. Various techniques (FTIR, RBS-HFS, SIMS, TDS and BTS) were used to characterize the structure, composition, density and wet etch rate of the film. FTIR analysis indicates that Damascene Nitride is very similar to a high density plasma (HDP) nitride film. HFS analysis shows the film's hydrogen content to be 13%,∼6% less than other PECVD nitride films, leading to a 20% improvement in etch selectivity to FSG. The film wet etch rate is 2 times slower than that of other PECVD nitrides, and the dielectric constant k was measured to be 6.8, which is lower compared to other PECVD nitrides and HDP CVD nitrides where k∼ 7.0 and 7.5, respectively. SIMS analysis shows that Cu diffusion is <250Å in the nitride, and low leakage current (10-10 A) is confirmed through BTS testing. The higher density of Damascene Nitride leads to higher etch selectivity and better Cu barrier properties, allowing a thinner nitride film to be used. Thinner nitride layers, in addition to the lower k of Damascene Nitride, leads to a 5-6% reduction in RC delay when Damascene Nitride is used with low k dielectric materials.


2002 ◽  
Vol 716 ◽  
Author(s):  
Parag C. Waghmare ◽  
Samadhan B. Patil ◽  
Rajiv O. Dusane ◽  
V.Ramgopal Rao

AbstractTo extend the scaling limit of thermal SiO2, in the ultra thin regime when the direct tunneling current becomes significant, members of our group embarked on a program to explore the potential of silicon nitride as an alternative gate dielectric. Silicon nitride can be deposited using several CVD methods and its properties significantly depend on the method of deposition. Although these CVD methods can give good physical properties, the electrical properties of devices made with CVD silicon nitride show very poor performance related to very poor interface, poor stability, presence of large quantity of bulk traps and high gate leakage current. We have employed the rather newly developed Hot Wire Chemical Vapor Deposition (HWCVD) technique to develop the a:SiN:H material. From the results of large number of optimization experiments we propose the atomic hydrogen of the substrate surface prior to deposition to improve the quality of gate dielectric. Our preliminary results of these efforts show a five times improvement in the fixed charges and interface state density.


1995 ◽  
Vol 67 (13) ◽  
pp. 1902-1904 ◽  
Author(s):  
J. Staffa ◽  
D. Hwang ◽  
B. Luther ◽  
J. Ruzyllo ◽  
R. Grant

2012 ◽  
Vol 503-504 ◽  
pp. 615-619 ◽  
Author(s):  
Alonggot Limcharoen ◽  
Chupong Pakpum ◽  
Pichet Limsuwan

The experiments to study the feasibility to fabricate the 45 slant on p-type (100)-oriented silicon wafer were done. The various mask shapes, rectangular, cross, circle and boomerang, were patterned on the SiO2 mask by utilizing the conventional photolithography and dry etching process for investigating the anisotropic wet etch characteristic. The edge of masks were align in two crystal direction, 110 and 100 that is allowable to get a better understanding about the crystal orientation and the angle between planes in a crystal system. The very low etch rate,  50 nm/min, process regime was selected to fabricate the 45 slant with the concept is the lowest of an overall etch rate in the system to reach the level that is possible to detect the (110) plane. The etch recipe can be used for the next development work to built a housing of the laser light source for applying in a data storage technology.


Sign in / Sign up

Export Citation Format

Share Document