Metal ions incorporated titania nanotubes for hydrocarbon oxidation

2005 ◽  
Vol 876 ◽  
Author(s):  
Huifang Xu ◽  
Ganesh Vanamu ◽  
Ziming Nie ◽  
Jonathan Phillips ◽  
Yifeng Wang

AbstractPresent work shows that simple, standard methods of metal addition, without the need for ion implantation or other complex and expensive processes, can dramatically improve the performance of titania based structures compared to P25 for (i.e. hydrocarbon oxidation) photocatalytic reactions. In this work, Au and Pt were incorporated into titania nanotubes, and their photocatalytic activities were investigated in detail. The samples were analyzed using a JEOL FEG-2010F field emission gun scanning transmission electron microscopy (STEM) with attached Oxford Instruments' X-ray energy-dispersive spectroscopy (EDS) system and Gatan imaging filtering (GIF) system. Both high-resolution TEM (HRTEM) images and high angle annular dark-field (HAAD) images were recorded for the specimens. The performance of the samples was tested for the oxidation of acetaldehyde using a continuous flow reactor. The pure nanotube is more photoreactive than commercial P25 titania. Both Au and Pt treated nanotube samples increased the photo reactivity. The most significant result of this work is that the activity of Pt (< 1 nm) containing nanotube is more than 10 times the rate of P25, and more than 6 times the rate of the pure nanotube. However, sizes of the Au and Pt nanoparticles on the nanotube surfaces likely affected the photo-reactivity. Large size of the Au and Pt particles decreased the photo-reactivity. Specifically, the addition of platinum without formation of obvious nanoparticles on the nanotube surfaces increased the maximum activity significantly, and increased the total yield.

1999 ◽  
Vol 589 ◽  
Author(s):  
T. Akita ◽  
K. Tanaka ◽  
S. Tsubota ◽  
M. Haruta

AbstractHRTEM(High-Resolution Transmission Electron Microscope), HAADF-STEM (High Angle Annular Dark Field Scanning Transmission Electron Microscope) and EELS(Electron Energy Loss Spectroscopy) techniques were applied for the characterization of Au/TiO2 catalysts. HAADFSTEM provides precise size distributions for Au particles smaller than ∼2nm in diameter. It was observed that many small particles under 2nm were supported on anatase TiO2 having a large surface area. The HAADF-STEM method was examined as a way to measure the shape of Au particles. EELS measurements were also used to examine the interface between Au and TiO2 support to study electronic structure effects.


2015 ◽  
Vol 6 ◽  
pp. 1287-1297 ◽  
Author(s):  
Deborah Vidick ◽  
Xiaoxing Ke ◽  
Michel Devillers ◽  
Claude Poleunis ◽  
Arnaud Delcorte ◽  
...  

Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru–Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1–3 nm) bimetal Ru–Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


Author(s):  
Z. L. Wang ◽  
J. Bentley

The success of obtaining atomic-number-sensitive (Z-contrast) images in scanning transmission electron microscopy (STEM) has shown the feasibility of imaging composition changes at the atomic level. This type of image is formed by collecting the electrons scattered through large angles when a small probe scans across the specimen. The image contrast is determined by two scattering processes. One is the high angle elastic scattering from the nuclear sites,where ϕNe is the electron probe function centered at bp = (Xp, yp) after penetrating through the crystal; F denotes a Fourier transform operation; D is the detection function of the annular-dark-field (ADF) detector in reciprocal space u. The other process is thermal diffuse scattering (TDS), which is more important than the elastic contribution for specimens thicker than about 10 nm, and thus dominates the Z-contrast image. The TDS is an average “elastic” scattering of the electrons from crystal lattices of different thermal vibrational configurations,


Author(s):  
R.D. Leapman ◽  
S.Q. Sun ◽  
S-L. Shi ◽  
R.A. Buchanan ◽  
S.B. Andrews

Recent advances in rapid-freezing and cryosectioning techniques coupled with use of the quantitative signals available in the scanning transmission electron microscope (STEM) can provide us with new methods for determining the water distributions of subcellular compartments. The water content is an important physiological quantity that reflects how fluid and electrolytes are regulated in the cell; it is also required to convert dry weight concentrations of ions obtained from x-ray microanalysis into the more relevant molar ionic concentrations. Here we compare the information about water concentrations from both elastic (annular dark-field) and inelastic (electron energy loss) scattering measurements.In order to utilize the elastic signal it is first necessary to increase contrast by removing the water from the cryosection. After dehydration the tissue can be digitally imaged under low-dose conditions, in the same way that STEM mass mapping of macromolecules is performed. The resulting pixel intensities are then converted into dry mass fractions by using an internal standard, e.g., the mean intensity of the whole image may be taken as representative of the bulk water content of the tissue.


2009 ◽  
Vol 24 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
Sašo Šturm ◽  
Makoto Shiojiri ◽  
Miran Čeh

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
N. Baladés ◽  
D. L. Sales ◽  
M. Herrera ◽  
A. M. Raya ◽  
J. C. Hernández-Garrido ◽  
...  

This paper explores the capability of scanning transmission electron microscopy (STEM) techniques in determining the dispersion degree of graphene layers within the carbon matrix by using simulated high-angle annular dark-field (HAADF) images. Results ensure that unmarked graphene layers are only detectable if their orientation is parallel to the microscope beam. Additionally, gold-marked graphene layers allow evaluating the dispersion degree in structural composites. Moreover, electron tomography has been demonstrated to provide truthfully 3D distribution of the graphene sheets inside the matrix when an appropriate reconstruction algorithm and 2D projections including channelling effect are used.


2018 ◽  
Vol 273 ◽  
pp. 95-100
Author(s):  
Wen Hui Yang ◽  
Tomokazu Yamamoto ◽  
Kazuhiro Nogita ◽  
Syo Matsumura

Cu6Sn5 is an important intermetallic compound in soldering and electronic packaging. It is formed at the interface between molten solder and substrate during the soldering process, and the evolution of microstructure and properties also occurs in service. Previous studies revealed that Au and Ni are stabilization alloying elements for hexagonal η-Cu6Sn5 intermetallic. For better understanding of stabilization mechanisms at atomic resolution level, in this work, we made an attempt atomic structure analysis on a stoichiometric (Cu, Au, Ni)6Sn5 intermetallic prepared by direct alloying. High-angle annular dark-field (HAADF) imaging and atomic-resolution chemical mapping were taken by the aberration-corrected (Cs-corrected) scanning transmission electron microscopy (STEM). It is found that Au and Ni doped Cu6Sn5 has hexagonal structure. The atom sites of Cu1 and Sn can be distinguished in atomic-resolution images after being observed from orientation [2110], which is also confirmed by atomic-resolution chemical mapping analysis. Importantly, atomic-resolution about distribution of alloying Au atom was directly observed, and Au atoms occupy the Cu1 sites in η-Cu6Sn5.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4531
Author(s):  
Maria Meledina ◽  
Geert Watson ◽  
Alexander Meledin ◽  
Pascal Van Der Voort ◽  
Joachim Mayer ◽  
...  

Ru catalyst nanoparticles were encapsulated into the pores of a Cr-based metal-organic framework (MOF)—MIL-101. The obtained material, as well as the non-loaded MIL-101, were investigated down to the atomic scale by annular dark-field scanning transmission electron microscopy using low dose conditions and fast image acquisition. The results directly show that the used wet chemistry loading approach is well-fitted for the accurate embedding of the individual catalyst nanoparticles into the cages of the MIL-101. The MIL-101 host material remains crystalline after the loading procedure, and the encapsulated Ru nanoparticles have a metallic nature. Annular dark field scanning transmission electron microscopy, combined with EDX mapping, is a perfect tool to directly characterize both the embedded nanoparticles and the loaded nanoscale MOFs. The resulting nanostructure of the material is promising because the Ru nanoparticles hosted in the MIL-101 pores are prevented from agglomeration—the stability and lifetime of the catalyst could be improved.


Sign in / Sign up

Export Citation Format

Share Document