The Belgian Demonstration Programme for the Disposal of High-Level and Long-Lived Radioactive Waste

2006 ◽  
Vol 932 ◽  
Author(s):  
Bernier Frédéric ◽  
Demarche Marc ◽  
Bel Johan

ABSTRACTThe EIG EURIDICE is responsible for performing large-scale tests, technical demonstrations and experiments so as to assess the feasibility of a final disposal of vitrified radioactive waste in deep clay layers. This programme is part of the Belgian Research and Development programme managed by ONDRAF/NIRAS. The research infrastructure includes the Underground Research Facilities HADES (URF HADES) in the Boom Clay geological formation and surface facilities. The achievements of the demonstration programme are the demonstration of the construction of shafts and galleries at industrial scale, the characterisation of the hydro-mechanical response of the host rock, and the “OPHELIE mock-up” a large scale hydration test under thermal load of pre-fabricated bentonite blocks. The future works will consist mainly in the realisation of the “PRACLAY experiments” including a large scale heater test. The large scale heater test has to demonstrate that Boom Clay is suitable, in terms of performance of the disposal system, to undergo the thermal load induced by the vitrified waste. The combined effect of the excavation and the thermal load will be investigated. A long term (more than 10 years) large scale heater test would be representative of the most penalizing conditions that could be encountered in the real disposal. The results of this test will constitute an important input for the Safety and Feasibility Cases 1 (SFC-1, 2013) and 2 (SFC-2, 2020).

Author(s):  
Toshihiko Awano ◽  
Takeshi Kanno ◽  
Susumu Kawakami ◽  
Hiroyoshi Ueda ◽  
Takahiro Kimoto

Abstract Small and large scale tests were performed to evaluate technical feasibility of the monolithic buffer material, defined as a large block of bentonite formed by the cold isostatic pressing, for geological disposal of high-level radioactive waste. Trial manufacturing tests up to approximately 70 [%]-scale of a Japanese disposal concept were carried out and emplacement tests were carried out by vacuum lifting and forklift-type methods for vertical and horizontal emplacement concepts, respectively. Based on the large engineering-scale tests, technical feasibility of the monolithic buffer was demonstrated.


2006 ◽  
Vol 932 ◽  
Author(s):  
Bruno Kursten ◽  
Frank Druyts

ABSTRACTThe underground formation that is currently being considered in Belgium for the permanent disposal of high-level radioactive waste and spent fuel is a 30-million-year-old argillaceous sediment (Boom Clay layer). This layer is located in the northeast of Belgium and extending under the Mol-Dessel nuclear site at a depth between 180 and 280 meter.Within the concept for geological disposal (multibarrier system), the metallic container is the primary engineered barrier. Its main goal is to contain the radioactive waste and to prevent the groundwater from coming into contact with the wasteform by acting as a tight barrier. The corrosion resistance of container materials is an important aspect in ensuring the tightness of the metallic container and therefore plays an important role in the safe disposal of HLW. The metallic container has to provide a high integrity, i.e. no through-the-wall corrosion should occur, at least for the duration of the thermal phase (500 years for vitrified HLW and 2000 years for spent fuel).An extensive corrosion evaluation programme, sponsored by the national authorities and the European Commission, was started in Belgium in the mid 1980's. The main objective was to evaluate the long-term corrosion performance of a broad range of candidate container materials. In addition, the influence of several parameters, such as temperature, oxygen content, groundwater composition (chloride, sulphate and thiosulphate), γ-radiation, … were investigated. The experimental approach consisted of in situ experiments (performed in the underground research facility, HADES), electrochemical experiments, immersion experiments and large scale demonstration tests (OPHELIE, PRACLAY). Degradation modes considered included general corrosion, localised corrosion (pitting) and stress corrosion cracking.This paper gives an overview of the more relevant experimental results, gathered over the past 25 years, of the Belgian programme in the field of container corrosion.


1981 ◽  
Vol 6 ◽  
Author(s):  
Gerald B. Woolsey ◽  
M. John Plodinec

ABSTRACTVitrification is the reference process for the immobilization of radioactive waste from the production of defense materials at the Savannah River Plant (SRP). Since 1979, a small vitrification facility (1 Ib/hr) has been operated at the Savannah River Laboratory using actual SRP waste. In previous studies. dried waste was fed to this smaller melter. This report discusses direct feeding of actual liquid-waste slurries to the small melter. These liquidfeeding tests demonstrated that addition of premelted glass frit to the waste slurry reduces the amount of material volatilized. Results of these tests are in accord with results of large-scale tests with actual waste.


Author(s):  
Bruno Kursten ◽  
Frank Druyts ◽  
Pierre Van Iseghem

Abstract The current worldwide trend for the final disposal of conditioned high-level, medium-level and long-lived alpha-bearing radioactive waste focuses on deep geological disposal. During the geological disposal, the isolation between the radioactive waste and the environment (biosphere) is realised by the multibarrier principle, which is based on the complementary nature of the various natural and engineered barriers. One of the main engineered barriers is the metallic container (overpack) that encloses the conditioned waste. In Belgium, the Boom Clay sediment is being studied as a potential host rock formation for the final disposal of conditioned high-level radioactive waste (HLW) and spent fuel. Since the mid 1980’s, SCK•CEN has developed an extensive research programme aimed at evaluating the suitability of a wide variety of metallic materials as candidate overpack material for the disposal of HLW. A multiple experimental approach is applied consisting of i) in situ corrosion experiments, ii) electrochemical experiments (cyclic potentiodynamic polarisation measurements and monitoring the evolution of ECORR as a function of time), and iii) immersion experiments. The in situ corrosion experiments were performed in the underground research facility, the High Activity Disposal Experimental Site, or HADES, located in the Boom clay layer at a depth of 225 metres below ground level. These experiments aimed at predicting the long-term corrosion behaviour of various candidate container materials. It was believed that this could be realised by investigating the medium-term interactions between the container materials and the host formation. These experiments resulted in a change of reasoning at the national authorities concerning the choice of over-pack material from the corrosion-allowance material carbon steel towards corrosion-resistant materials such as stainless steels. The main arguments being the severe pitting corrosion during the aerobic period and the large amount of hydrogen gas generated during the subsequent anaerobic period. The in situ corrosion experiments however, did not allow to unequivocally quantify the corrosion of the various investigated candidate overpack materials. The main shortcoming was that they did not allow to experimentally separate the aerobic and anaerobic phase. This resulted in the elaboration of a new laboratory programme. Electrochemical corrosion experiments were designed to investigate the effect of a wide variety of parameters on the localised corrosion behaviour of candidate overpack materials: temperature, SO42−, Cl−, S2O32−, oxygen content (aerobic - anaerobic),… Three characteristic potentials can be derived from the cyclic potentiodynamic polarisation (CPP) curves: i) the open circuit potential, OCP, ii) the critical potential for pit nucleation, ENP, and iii) the protection potential, EPP. Monitoring the open circuit potential as a function of time in clay slurries, representative for the underground environment, provides us with a more reliable value for the corrosion potential, ECORR, under disposal conditions. The long-term corrosion behaviour of the candidate overpack materials can be established by comparing the value of ECORR relative to ENP and EPP (determined from the CPP-curves). The immersion tests were developed to complement the in situ experiments. These experiments aimed at determining the corrosion rate and to identify the corrosion processes that can occur during the aerobic and anaerobic period of the geological disposal. Also, some experiments were elaborated to study the effect of graphite on the corrosion behaviour of the candidate overpack materials.


Author(s):  
Thibaud Labalette ◽  
Alain Harman ◽  
Marie-Claude Dupuis

The Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and investigations on the siting and design of the new repository upon the French Radioactive Waste Management Agency (Agence nationale pour la gestion des de´chets radioactifs – Andra), in order for the review of the creation-licence application to start in 2015 and, subject to its approval, the commissioning of the new repository in 2025. In late 2009, Andra submitted to the French government proposals concerning the implementation and the design of Cige´o (Centre industriel de stockage ge´ologique). A significant step of the project was completed with the delineation of an interest zone for the construction of the repositor’s underground facilities in 2010. This year, Andra has launched a new dialogue phase with local actors in order to clarify the implementation scenarios on the surface. The selected site will be validated after the public debate that is now scheduled for the first half of 2013. This debate will be organized by the National Public Debate Committee (Commission nationale du de´bat public). In parallel, the State is leading the preparation of an territorial development scheme, which will be presented during the public debate. The 2009 milestone also constitutes a new step in the progressive design process of the repository. After the 1998, 2001 and 2005 iterations, which focused mainly on the long-term safety of the repository, the Dossier 2009 highlighted its operational safety, with due account of the non-typical characteristics of an underground nuclear facility. It incorporates the first results of the repository-optimisation studies, which started in 2006 and will continue in the future. The reversibility options for the repository constitute proposals in terms of added flexibility in repository management and in package-recovery levels. They orient the design of the repository in order to promote those reversibility components. They contribute to the dialogue with stakeholders in the preparation of the public debate and of the future act on the reversibility conditions of the repository. The development of the repository shall be achieved over a long period, around the century. Hence, the designer will acquire additional knowledge at every new development of the project, notably during Phase 1, which he may reuse during the following phase, in order, for instance, to optimise the project. This process is part of the approach proposed by Andra in 2009 pursuant to the reversibility principle.


Author(s):  
I. CAÑAMÓN ◽  
F. J. ELORZA ◽  
A. MANGIN ◽  
P. L. MARTÍN ◽  
R. RODRÍGUEZ

This work analyzes the physical processes occurring in the Mock-up test of the FEBEX I and II projects. FEBEX I and II is an European research project (1996–2004) led by ENRESA, that has financial support from the European Commission. This experiment is based in two large-scale heating tests ("in-situ" test and "Mock-up" test) simulating a radioactive waste repository, and tries to analyze the thermo-hydro-mechanical (THM) processes that could eventually happen in this kind of repositories.The main objectives of this study have been the following: to identify the physical processes occurring in the Mock-up experiment and to characterize them quantitatively; to understand the nature and consequences of several incidents happening in the Mock-up during the heating phase; and, finally, to analyze the data reliability of the sensors measurements and to predict possible failures.The analysis techniques used in this work are both statistical (time series correlation and spectral analysis, wavelets analysis, matching pursuit analysis) and non-statistical (spatial distribution analysis of data). These methods aim to establish the existing relationships between several data series registered in the experiment, corresponding to the measured parameters, and to characterize on time and frequency the non-stationary response of the series. A better understanding of the main THM processes affecting the engineered barriers used for the isolation of the radioactive waste is then available with the results obtained from those analyses.


2016 ◽  
Vol 95 (3) ◽  
pp. 337-347 ◽  
Author(s):  
J.R. Valstar ◽  
N. Goorden

AbstractA groundwater model was set up to study far-field transport for the potential of a radioactive waste repository the Boom Clay in the Netherlands. The existing national groundwater model, the Netherlands Hydrological Instrument, was extended in the vertical direction to include geological formation up to and beyond the Boom Clay. As the amount of hydrogeological data in the deeper subsurface is limited, simplifications in the model schematisation were necessary. Moreover, nationwide data about the tops and bottoms of many of the deeper geological formations and their members are lacking and required interpolation. Finally, values for hydrogeological parameters, such as porosity and hydraulic conductivity, are also lacking for the deeper formations. These values were estimated using relationships with depth and lithology. Moreover, no quantitative data about heterogeneity within the deeper geological formations or its members were available.In the Dutch research programme on the geological disposal of radioactive waste (OPERA), the post-closure safety of a generic repository is assessed in either Boom Clay or rock salt. Disposal of Dutch radioactive waste is not foreseen in the next decades and a choice of host rock has not been made. In the early, conceptual phase of the radioactive waste disposal process in the Netherlands no potential repository locations were selected and a groundwater flow model for the entire Netherlands was build. As a starting point a geological disposal facility is assumed to be present at a depth of at least 500 m within a Boom Clay formation of 100 m in order to be able to make an assessment of post-closure safety with this geological formation in a disposal concept. With these assumptions, a general idea of potential flow patterns has been obtained and broken down into pathline trajectories. These trajectories were calculated to achieve input for the potential transport of radioactive isotopes (radionuclides) from this waste in the Netherlands after the closure of a disposal facility in Boom Clay.The groundwater flow patterns in the deeper subsurface strongly resemble the larger scale flow patterns in the shallow subsurface, with flow from infiltration areas in the east and the south of the Netherlands towards to seepage areas of the polders in the west and the northern part of the country or towards the river valleys of the Rhine and IJssel. Groundwater flow velocities, however, are much lower in the deeper part of the model and consequently travel times are much larger. The conservative travel times from the pathlines range from a few 1000 years to more than 10,000,000 years depending on the location for the repository. Longer travel times are obtained for locations with a downward groundwater flow in the Boom Clay.Because of the simplifications in the model schematisation and the uncertainty in the model parameters, the present results should only be considered as a first indication. Moreover, the model could not be validated due to a lack of validation data. However, the insight gained with the model may help to design a data collection strategy for dedicated model validation, such as measuring the hydraulic gradient over the Boom Clay to validate downward flow in the Boom Clay to obtain the necessary data for a post-closure safety assessment.


Author(s):  
Pierre Van Iseghem ◽  
Jan Marivoet

This paper discusses the impact of the parameter values used for the transport of radionuclides from high-level radioactive waste to the far-field on the long-term safety of a proposed geological disposal in the Boom Clay formation in Belgium. The methodology of the Safety Assessment is explained, and the results of the Safety Assessment for vitrified high-level waste and spent fuel are presented. The radionuclides having the strongest impact on the dose-to-man for both HLW glass and spent fuel are 79Se, 129I, 126Sn, 36Cl, and 99Tc. Some of them are volatile during the vitrification process, other radionuclides are activation products, and for many of them there is no accurate information on their inventory in the waste form. The hypotheses in the selection of the main parameter values are further discussed, together with the status of the R&D on one of the main dose contributing radionuclides (79Se).


2016 ◽  
Vol 53 (3) ◽  
pp. 396-409 ◽  
Author(s):  
Noémie Prime ◽  
Séverine Levasseur ◽  
Laurent Miny ◽  
Robert Charlier ◽  
Angélique Léonard ◽  
...  

Drying-induced shrinkage of geomaterials may have a strong effect on geostructure stability and deformation. The settlement of foundations and fracture openings in slopes, roads, and tunnel walls may be due to drying shrinkage. However, there is still a lack of knowledge concerning shrinkage evolution with time and shrinkage propagation within the material. In this study, the shrinkage of a specific clayey rock — Boom clay — under drying conditions is investigated experimentally. This rock is a deep geological formation, which is under study for high-level and long-term radioactive waste storage in Belgium. Two experimental campaigns are presented. The first, based on the vapour equilibrium drying technique and coupled with sample size manual measurement, aims to characterize the material shrinkage in balanced states. The second, based on the convective drying technique and coupled with shape monitoring using X-ray tomography, aims to analyse how shrinkage develops before reaching a steady state. Both approaches put in evidence the shrinkage anisotropy of this structurally bedded rock, with a ratio around 2 between the direction of maximum strains and the direction of minimum strains. However, the two drying techniques also provide complementary results as the relation between the amount of shrinkage and the retention curve (for uniform drying imposed with saline solutions) and the kinetics of shrinkage propagation inside the material (for nonuniform drying imposed with air convection).


Sign in / Sign up

Export Citation Format

Share Document