High Resolution Z-Contrast Imaging of Semiconductor Interfaces

MRS Bulletin ◽  
1991 ◽  
Vol 16 (3) ◽  
pp. 34-40 ◽  
Author(s):  
D.E. Jesson ◽  
S.J. Pennycook

The structural and compositional integrity of interfaces between semiconductor multilayers can profoundly influence the optical and electronic properties of epitaxially grown heterostructures. Understanding the atomic-scale interfacial structure and chemistry is therefore essential to correctly relate electrical measurements to theoretical models and to correlate such effects with growth conditions. High-resolution electron microscopy (HREM) has played a pivotal role in this process, providing important information on interface commensurability and revealing the presence and nature of defects.More recently, significant advances have been made in applying HREM to the difficult problem of chemical composition mapping in systems where no structural change occurs across the interfaces. The basis of such methods involves using the objective lens as a bandpass filter and tuning in on a specific range of spatial frequencies to form a chemically sensitive interference pattern. By using a suitable low-index zone axis and choosing an optimum range of specimen thickness, the patterns can indeed be extremely sensitive to the strength and periodicities of the projected potential.

Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


Author(s):  
J.K. Weiss ◽  
M. Gajdardziska-Josifovska ◽  
M. R. McCartney ◽  
David J. Smith

Interfacial structure is a controlling parameter in the behavior of many materials. Electron microscopy methods are widely used for characterizing such features as interface abruptness and chemical segregation at interfaces. The problem for high resolution microscopy is to establish optimum imaging conditions for extracting this information. We have found that off-axis electron holography can provide useful information for the study of interfaces that is not easily obtained by other techniques.Electron holography permits the recovery of both the amplitude and the phase of the image wave. Recent studies have applied the information obtained from electron holograms to characterizing magnetic and electric fields in materials and also to atomic-scale resolution enhancement. The phase of an electron wave passing through a specimen is shifted by an amount which is proportional to the product of the specimen thickness and the projected electrostatic potential (ignoring magnetic fields and diffraction effects). If atomic-scale variations are ignored, the potential in the specimen is described by the mean inner potential, a bulk property sensitive to both composition and structure. For the study of interfaces, the specimen thickness is assumed to be approximately constant across the interface, so that the phase of the image wave will give a picture of mean inner potential across the interface.


Author(s):  
Margaret L. Sattler ◽  
Michael A. O'Keefe

Multilayered materials have been fabricated with such high perfection that individual layers having two atoms deep are possible. Characterization of the interfaces between these multilayers is achieved by high resolution electron microscopy and Figure 1a shows the cross-section of one type of multilayer. The production of such an image with atomically smooth interfaces depends upon certain factors which are not always reliable. For example, diffusion at the interface may produce complex interlayers which are important to the properties of the multilayers but which are difficult to observe. Similarly, anomalous conditions of imaging or of fabrication may occur which produce images having similar traits as the diffusion case above, e.g., imaging on a tilted/bent multilayer sample (Figure 1b) or deposition upon an unaligned substrate (Figure 1c). It is the purpose of this study to simulate the image of the perfect multilayer interface and to compare with simulated images having these anomalies.


Author(s):  
K. Ishizuka ◽  
K. Shirota

In a conventional alignment for high-resolution electron microscopy, the specimen point imaged at the viewing-screen center is made dispersion-free against a voltage fluctuation by adjusting the incident beam direction using the beam deflector. For high-resolution works the voltage-center alignment is important, since this alignment reduces the chromatic aberration. On the other hand, the coma-free alignment is also indispensable for high-resolution electron microscopy. This is because even a small misalignment of the incident beam direction induces wave aberrations and affects the appearance of high resolution electron micrographs. Some alignment procedures which cancel out the coma by changing the incident beam direction have been proposed. Most recently, the effect of a three-fold astigmatism on the coma-free alignment has been revealed, and new algorithms of coma-free alignment have been proposed.However, the voltage-center and the coma-free alignments as well as the current-center alignment in general do not coincide to each other because of beam deflection due to a leakage field within the objective lens, even if the main magnetic-field of the objective lens is rotationally symmetric. Since all the proposed procedures for the coma-free alignment also use the same beam deflector above the objective lens that is used for the voltage-center alignment, the coma-free alignment is only attained at the sacrifice of the voltage-center alignment.


1991 ◽  
Vol 238 ◽  
Author(s):  
Geoffrey H. Campbells ◽  
Wayne E. King ◽  
Stephen M. Foiles ◽  
Peter Gumbsch ◽  
Manfred Rühle

ABSTRACTA (310) twin boundary in Nb has been fabricated by diffusion bonding oriented single crystals and characterized using high resolution electron microscopy. Atomic structures for the boundary have been predicted using different interatomic potentials. Comparison of the theoretical models to the high resolution images has been performed through image simulation. On the basis of this comparison, one of the low energy structures predicted by theory can be ruled out.


1986 ◽  
Vol 77 ◽  
Author(s):  
Mary Beth Stearns ◽  
Amanda K. Petford-Long ◽  
C.-H. Chang ◽  
D. G. Stearns ◽  
N. M. Ceglio ◽  
...  

ABSTRACTThe technique of high resolution electron microscopy has been used to examine the structure of several multilayer systems (MLS) on an atomic scale. Mo/Si multilayers, in use in a number of x-ray optical element applications, and Mo/Si multilayers, of interest because of their magnetic properties, have been imaged in cross-section. Layer thicknesses, flatness and smoothness have been analysed: the layer width can vary by up to 0.6nm from the average value, and the layer flatness depends on the quality of the substrate surface for amorphous MLS, and on the details of the crystalline growth for the crystalline materials. The degree of crystallinity and the crystal orientation within the layers have also been investigated. In both cases, the high-Z layers are predominantly crystalline and the Si layers appear amorphous. Amorphous interfacial regions are visible between the Mo and Si layers, and crystalline cobalt suicide interfacial regions between the Co and Si layers. Using the structural measurements obtained from the HREM results, theoretical x-ray reflectivity behaviour has been calculated. It fits the experimental data very well.


2001 ◽  
Vol 7 (S2) ◽  
pp. 916-917 ◽  
Author(s):  
Michael A. O’Keefe

Two optimum defocus conditions are well known to users of high-resolution transmission electron microscopes. Scherzer defocus is useful in high-resolution electron microscopy (HREM) because it produces an image of the specimen “projected potential” to the resolution of the microscope. Lichte defocus is useful in electron holography because it optimizes sampling in frequency-space by minimizing the slope of the microscope objective lens phase change out to the highest spatial frequency in the hologram, consequently minimizing dispersion. For focal-series reconstruction, the requirement to maximize transfer into the image of high-frequency diffracted beam amplitudes leads to a third optimum defocus condition.Image reconstruction methods allow the achievement of super-resolution - resolution beyond the native (Scherzer) resolution of the microscope - by correction of the phase changes introduced by the microscope objective lens. One such method is focal-series reconstruction, in which diffracted-beam information obtained at several different focus values is combined. to produce a valid super-resolution result, it is necessary to ensure that every spatial frequency is represented appropriately. Suitable choice of an optimum defocus produces optimum transfer of diffracted-beam amplitudes at any chosen spatial frequency.


1989 ◽  
Vol 159 ◽  
Author(s):  
A. Catana ◽  
M. Heintze ◽  
P.E. Schmid ◽  
P. Stadelmann

ABSTRACTHigh Resolution Electron Microscopy (HREM) was used to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. CoSi is found to grow epitaxially on Si with [111]Si // [111]CoSi and < 110 >Si // < 112 >CoSi. Two CoSi non-equivalent orientations (rotated by 180° around the substrate normal) can occur in this plane. They can be clearly distinguished by HRTEM on cross-sections ( electron beam along [110]Si). At about 500°C CoSi transforms to CoSi2. Experimental results show that the type B orientation relationship satisfying [110]Si // [112]CoSi is preserved after the initial stage of CoSi2 formation. At this stage an epitaxial CoSi/CoSi2/Si(111) system is obtained. The atomic scale investigation of the CoSi2/Si interface shows that a 7-fold coordination of the cobalt atoms is observed in both type A and type B epitaxies.


1990 ◽  
Vol 202 ◽  
Author(s):  
A. Catana ◽  
P.E. Schmid

ABSTRACTHigh Resolution Electron Microscopy (HREM) and image calculations are combined to study microstructural changes related to the CoSi/Si-CoSi/CoSi2/Si-CoSi2/Si transformations. The samples are prepared by UHV e-beam evaporation of Co layers (2 nm) followed by annealing at 300°C or 400°C. Cross-sectional observations at an atomic scale show that the silicidation of Co at the lower temperature yields epitaxial CoSi/Si domains such that [111]Si // [111]CoSi and <110>Si // <112>CoSi. At about 400°C CoSi2 nucleates at the CoSi/Si interface. During the early stages of this chemical reaction, an epitaxial CoSi/CoSi2/Si system is observed. The predominant orientation is such that (021) CoSi planes are parallel to (220) CoSi2 planes, the CoSi2/Si interface being of type B. The growth of CoSi2 is shown to proceed at the expense of both CoSi and Si.


Sign in / Sign up

Export Citation Format

Share Document