scholarly journals METABOLIC RATES (SMR, RMR, AMR, AND MMR) OF Oplegnathus fasciatus ON DIFFERENT TEMPERATURE AND SALINITY SETTINGS

2018 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Vitas Atmadi Prakoso ◽  
Young Jin Chang

The metabolic rate of aquatic animals is closely related to oxygen concentration and influenced by internal and external factors. Despite its high value as marine fish species in South Korea, information on rock bream Oplegnathus fasciatus metabolism is scarcely available. This study observed the standard metabolic rate (SMR), routine metabolic rate (RMR), and active metabolic rate (AMR) of rock bream Oplegnathus fasciatus subjected to different temperature settings. Another observation was performed to find out the maximum metabolic rate (MMR) on rock bream subjected to different salinity settings. Fish (TL: 26.86 ± 0.29 cm and BW: 469.40 ± 38.21 g for SMR, RMR, and AMR measurement; TL: 26.7 ± 0.4 cm and BW: 451.0 ± 44.4 g for MMR measurement) were observed using respirometer (dimension = 30 cm × 20 cm × 20 cm; volume: 10.4 L) inside a recirculation systems. SMR, RMR, and AMR were measured at 15°C, 20°C, and 25°C. Meanwhile, MMR was measured at 15, 25, and 35 psu. The results showed that SMR, RMR, and AMR increased linearly by increasing the temperatures (SMR: 58.7 ± 3.2, 102.7 ± 4.3, and 157.1 ± 4.1 mg O2/kg/h at 15°C, 20°C, and 25°C, respectively; RMR: 66.0 ± 8.6, 112.6 ± 10.2, and 175.2 ± 21.3 mg O2/kg/h at 15°C, 20°C, and 25°C, respectively; AMR: 73.4 ± 7.4, 122.0 ± 6.3, and 196.7 ± 15.4 mg O2/kg/h at 15°C, 20°C, and 25°C, respectively), whilst MMR decreased by lowering salinity (48.5 ± 5.2, 61.1 ± 5.5, and 89.3 ± 14.7 mg O2/kg/hour at salinity of 15, 25, and 35 psu, respectively).

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eric Ste-Marie ◽  
Yuuki Y. Watanabe ◽  
Jayson M. Semmens ◽  
Marianne Marcoux ◽  
Nigel E. Hussey

Abstract Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33–126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.


1998 ◽  
Vol 46 (4) ◽  
pp. 317 ◽  
Author(s):  
Gavin S. Bedford ◽  
Keith A. Christian

Pythons have standard metabolic rates and preferred body temperatures that are lower than those of most other reptiles. This study investigated metabolic rates and preferred body temperatures of seven taxa of Australian pythons. We found that Australian pythons have particularly low metabolic rates when compared with other boid snakes, and that the metabolic rates of the pythons did not change either seasonally or on a daily cycle. Preferred body temperatures do vary seasonally in some species but not in others. Across all species and seasons, the preferred body temperature range was only 4.9˚C. The thermal sensitivity (Q10) of oxygen consumption by pythons conformed to the established range of between 2 and 3. Allometric equations for the pooled python data at each of the experimental temperatures gave an equation exponent of 0.72–0.76, which is similar to previously reported values. By having low preferred body temperatures and low metabolic rates, pythons appear to be able to conserve energy while still maintaining a vigilant ‘sit and wait’ predatory existence. These physiological attributes would allow pythons to maximise the time they can spend ‘sitting and waiting’ in the pursuit of prey.


2019 ◽  
Author(s):  
Elis Newham ◽  
Pamela G. Gill ◽  
Philippa Brewer ◽  
Michael J. Benton ◽  
Vincent Fernandez ◽  
...  

AbstractThere is uncertainty regarding the timing and fossil species in which mammalian endothermy arose, with few studies of stem-mammals on key aspects of endothermy such as basal or maximum metabolic rates, or placing them in the context of living vertebrate metabolic ranges. Synchrotron X-ray imaging of incremental tooth cementum shows two Early Jurassic stem-mammals, Morganucodon and Kuehneotherium, had lifespans (a basal metabolic rate proxy) considerably longer than comparably sized living mammals, but similar to reptiles. Morganucodon also had femoral blood flow rates (a maximum metabolic rate proxy) intermediate between living mammals and reptiles. This shows maximum metabolic rates increased evolutionarily before basal rates, and that contrary to previous suggestions of a Triassic origin, Early Jurassic stem-mammals lacked the endothermic metabolism of living mammals.One Sentence SummarySurprisingly long lifespans and low femoral blood flow suggest reptile-like physiology in key Early Jurassic stem-mammals.


2021 ◽  
Vol 9 ◽  
Author(s):  
Philipp L. Knaus ◽  
Anneke H. van Heteren ◽  
Jacqueline K. Lungmus ◽  
P. Martin Sander

Varanids are the only non-avian sauropsids that are known to approach the warm-blooded mammals in stamina. Furthermore, a much higher maximum metabolic rate (MMR) gives endotherms (including birds) higher stamina than crocodiles, turtles, and non-varanid lepidosaurs. This has led researchers to hypothesize that mammalian endothermy evolved as a second step after the acquisition of elevated MMR in non-mammalian therapsids from a plesiomorphic state of low metabolic rates. In recent amniotes, MMR correlates with the index of blood flow into the femur (Qi), which is calculated from femoral length and the cross-sectional area of the nutrient foramen. Thus, Qi may serve as an indicator of MMR range in extinct animals. Using the Qi proxy and phylogenetic eigenvector maps, here we show that elevated MMRs evolved near the base of Synapsida. Non-mammalian synapsids, including caseids, edaphosaurids, sphenacodontids, dicynodonts, gorgonopsids, and non-mammalian cynodonts, show Qi values in the range of recent endotherms and varanids, suggesting that raised MMRs either evolved in synapsids shortly after the Synapsida-Sauropsida split in the Mississippian or that the low MMR of lepidosaurs and turtles is apomorphic, as has been postulated for crocodiles.


Biology ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 56 ◽  
Author(s):  
Schwieterman ◽  
Crear ◽  
Anderson ◽  
Lavoie ◽  
Sulikowski ◽  
...  

Understanding how rising temperatures, ocean acidification, and hypoxia affect the performance of coastal fishes is essential to predicting species-specific responses to climate change. Although a population’s habitat influences physiological performance, little work has explicitly examined the multi-stressor responses of species from habitats differing in natural variability. Here, clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus) from mid-Atlantic estuaries, and thorny skate (Amblyraja radiata) from the Gulf of Maine, were acutely exposed to current and projected temperatures (20, 24, or 28 °C; 22 or 30 °C; and 9, 13, or 15 °C, respectively) and acidification conditions (pH 7.8 or 7.4). We tested metabolic rates and hypoxia tolerance using intermittent-flow respirometry. All three species exhibited increases in standard metabolic rate under an 8 °C temperature increase (Q10 of 1.71, 1.07, and 2.56, respectively), although this was most pronounced in the thorny skate. At the lowest test temperature and under the low pH treatment, all three species exhibited significant increases in standard metabolic rate (44–105%; p < 0.05) and decreases in hypoxia tolerance (60–84% increases in critical oxygen pressure; p < 0.05). This study demonstrates the interactive effects of increasing temperature and changing ocean carbonate chemistry are species-specific, the implications of which should be considered within the context of habitat.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 46
Author(s):  
Mirela Crețu ◽  
Raluca-Cristina Guriencu ◽  
Lorena Dediu ◽  
Maria-Desimira Stroe

In the present study, oxygen consumption of two sturgeon species, beluga (Huso huso), sterlet (Acipenser ruthenus), and their hybrid reared in a recirculating aquaculture system were compared over body intervals from 54–107 g to determine the interspecific variation of metabolic rate. Metabolic rates were measured using the intermittent-flow respirometry technique. Standard oxygen consumption rates (SMR, mg O2 h−1) of sterlet were 30% higher compared with beluga and 22% higher compared with bester hybrid. The routine metabolic rate (RMR, mg O2 h−1) averaged 1.58 ± 0.13 times the SMR for A. ruthenus, 1.59 ± 0.3 for H. huso, and 1.42 ± 0.15 for the hybrid bester. However, the study revealed no significant differences (p > 0.05) between mean values of SMR and RMR for beluga and bester hybrid. The scaling coefficient reflected a closed isometry for the hybrid (b = 0.97), while for the purebred species the coefficient of 0.8 suggests a reduction in oxygen consumption with increasing body mass. These findings may contribute to understanding the differences in growth performances and oxygen requirements of the studied species reared in intensive aquaculture system.


2017 ◽  
Vol 12 (2) ◽  
pp. 161
Author(s):  
Vitas Atmadi Prakoso ◽  
Young Jin Chang

Laju respirasi hewan akuatik memiliki hubungan yang erat dengan metabolisme. Tingkat metabolisme hewan merupakan variabel yang dapat dipengaruhi faktor dalam maupun luar, salah satunya adalah suhu. Pada ikan, proses metabolisme juga berkorelasi dengan suhu. Salah satu jenis ikan yang perlu dikaji laju respirasinya adalah ikan blackhead seabream Acanthopagrus schlegelii yang merupakan spesies ikan laut yang popular di Korea Selatan, sehingga diperlukan lebih banyak informasi lagi mengenai laju respirasi ikan ini untuk mengoptimalkan metabolisme ikan ini dan berdampak kepada produktivitas budidaya. Penelitian ini bertujuan untuk mengevaluasi laju respirasi induk ikan blackhead seabream pada beberapa tingkatan suhu. Ikan blackhead seabream (panjang total 29,3 ± 2,2 cm dan bobot tubuh 538,3 ± 43,0 g) diteliti menggunakan respirometer dalam sistem resirkulasi. Tiga kelompok percobaan dilakukan untuk mengukur laju respirasi berdasarkan perubahan suhu pemeliharaan (15°C, 20°C, dan 25°C). Hasil penelitian menunjukkan bahwa kecenderungan laju respirasi meningkat secara linier dengan peningkatan suhu perlakuan, dengan nilai tertinggi sebesar 164,8 ± 30,7 mg O2/kg/jam pada 25°C dan nilai terendah sebesar 72,4 ± 8,1 mg O2/kg/jam pada 15°C. Sementara itu, frekuensi pernapasan berkorelasi positif terhadap kenaikan suhu. Berdasarkan penelitian ini, dapat disimpulkan bahwa perubahan suhu dari 15°C ke 25°C menyebabkan peningkatan laju respirasi pada induk ikan blackhead seabream.It is well known that a close relationship exists between respiration rate and metabolism in aquatic animal. In fish, the metabolic rate is influenced by internal or external factors, such as temperature. This research observed the respiration rate of blackhead seabream, Acanthopagrus schlegelii, which is one of the popular marine fish species in South Korea. Despite the fish popularity, very few information are available about the fish’s respiration rate which is important in order to optimize its metabolism and increase its aquaculture productivity. This study aimed to evaluate the respiration rate of adult blackhead seabream reared in media with different temperature settings. The fish (total length of 29.3 ±2.2 cm and body weight of 538.3 ± 43.0 g) were observed using a respirometer placed inside the recirculation systems. Three groups of experiments were set up to measure the fish’s respiration rate according to different rearing temperatures (15°C, 20°C, and 25°C). The results showed that there was a tendency of respiration rate increased linearly with the increase of temperature. The highest respiration rate was 164.8 ± 30.7 mg O2/kg/hour at 25°C and the lowest value was 72.4 ± 8.1 mg O2/kg/hour at 15°C which indicated that the respiratory rate positively correlated to the change in temperature. According to this study, it can be concluded that temperature changes from 15°C to 25°C led an increase in respiration rate of adult blackhead seabream  


Web Ecology ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Milad Shokri ◽  
Mario Ciotti ◽  
Fabio Vignes ◽  
Vojsava Gjoni ◽  
Alberto Basset

Abstract. Standard metabolic rate is a major functional trait with large inter-individual variability in many groups of aquatic species. Here we present results of an experimental study to address variation in standard metabolic rates, over different scales of organisation and environments, within a specific group of aquatic macro-invertebrates (i.e. gammarid amphipods) that represent the primary consumers in detritus food webs. The study was carried out using flow-through microrespirometric techniques on male specimens of three gammarid species from freshwater, transitional water and marine ecosystems. We examined individual metabolic rate variations at three scales: (1) at the individual level, during an 8 h period of daylight; (2) at the within-population level, along body-size and body-condition gradients; (3) at the interspecific level, across species occurring in the field in the three different categories of aquatic ecosystems, from freshwater to marine. We show that standard metabolic rates vary significantly at all three scales examined, with the highest variation observed at the within-population level. Variation in individual standard metabolic rates during the daylight hours was generally low (coefficient of variation, CV<10 %) and unrelated to time. The average within-population CV ranged between 30.0 % and 35.0 %, with body size representing a significant source of overall inter-individual variation in the three species and individual body condition exerting only a marginal influence. In all species, the allometric equations were not as steep as would be expected from the 3∕4 power law, with significant variation in mass-specific metabolic rates among populations. The population from the transitional water ecosystem had the highest mass-specific metabolic rates and the lowest within-population variation. In the gammarid species studied here, body-size-independent variations in standard individual metabolic rates were higher than those explained by allometric body size scaling, and the costs of adaptation to short-term periodic variations in water salinity in the studied ecosystems also seemed to represent a major source of variation.


2014 ◽  
Vol 281 (1794) ◽  
pp. 20141490 ◽  
Author(s):  
Erik Sandblom ◽  
Albin Gräns ◽  
Michael Axelsson ◽  
Henrik Seth

Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin ( Myoxocephalus scorpius ) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations.


1973 ◽  
Vol 30 (3) ◽  
pp. 379-387 ◽  
Author(s):  
J. R. Brett ◽  
N. R. Glass

Ten years research on metabolic rates and swimming speeds of sockeye salmon (Oncorhynchus nerka) ranging in weight from 2 to 2000 g, at temperatures from 2 to 24 C, is reviewed and summarized. Analysis of weight–slope relations (b values) at three temperatures, using log–log transformations, provided an overall mean of 0.88 for standard metabolism and 0.99 for active metabolism. A previously determined semilog equation for temperature effect on standard metabolic rate (at approximately 50 g) was supported by supplementary data at 2 C. Predictive graphic models in the form of isopleths of metabolic rates and critical swimming speeds in relation to weight, length, and temperature are depicted. These provide a composite presentation useful in estimating the metabolic rate and maximum sustained speed for any size and temperature.


Sign in / Sign up

Export Citation Format

Share Document