scholarly journals Determination of the effect of carbon nanotubes on the microstructure and functional properties of polycarbonate-based polymer nanocomposite materials

2021 ◽  
Vol 4 (12(112)) ◽  
pp. 53-60
Author(s):  
Eduard Lysenkov ◽  
Leonid Klymenko

Polymer nanocomposites are widely used in various high-tech industries. Due to the combination of the elasticity of the matrix and the strength of the inorganic filler, they have improved functional characteristics compared to unfilled polymers. The article is devoted to determining the effect of carbon nanotubes (CNT) on the microstructure and properties of polymeric nanocomposite materials for 3D printing based on polycarbonate. As a result of this work, a series of composite materials was manufactured using a piston extruder. Their microstructure and functional characteristics were investigated using methods of optical microscopy, thermophysical, electrical and mechanical analysis. It was found that CNTs form clusters in the polymer matrix, which form a percolation network at a content of 0.5–0.8 %. This feature of the structure formation of CNTs provided an abrupt increase in the functional characteristics of the materials obtained. It is shown that with an increase in the filler content in the system to 3 %, the thermal conductivity rapidly increases to 1.22 W/(m∙K). A similar effect is observed for the electrical conductivity, which increases by seven orders of magnitude from 10-12 to 10-5 S/cm at 3 % CNT content in the system, exhibiting percolation behavior. With the introduction of CNTs, the crystallinity degree of the polymer matrix decreases by almost 15 %, due to the fact that the developed surface of the nanotubes creates steric hindrances for polycarbonate macromolecules. This effect almost negates the reinforcing effect of nanotubes; therefore, the mechanical tensile strength with the introduction of 3 % CNTs increases by only 21 % compared to the unfilled matrix. In terms of their functional characteristics, the obtained materials are promising for the creation of filaments for 3D printing on their basis.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Carlos Velasco-Santos ◽  
Ana Laura Martinez-Hernandez ◽  
Witold Brostow ◽  
Victor M. Castaño

Unfunctionalized and silanized multiwalled carbon nanotubes (MWNTs) were incorporated in poly(methylmethacrylate) matrices usingin situpolymerization. Polymer-compatible functional groups on carbon nanotube (CNT) surfaces were characterized by infrared spectroscopy. These chemical moieties improve interaction at interfaces, allowing transfer of mechanical load between the matrix and the dispersed phase as reflected in the resulting improved mechanical and thermophysical properties. The composites were characterized by Raman spectroscopy to evaluate molecular level interactions and dynamical mechanical analysis. Composites with silanized CNTs have higher storage modulus (E′) than polymer reinforced with unfunctionalized nanotubes. Considering the average of the samples, only 1 wt.% of silanized nanotubes provides an increase inE′ of 165% at room temperature with respect to polymer matrix, and the increments reached are by a factor of 6.8 and 13.6 over the polymer matrix at 80°C and 90°C, respectively. 1 wt% of silanized CNTs increases the glass transition temperature of polymer matrix around 30°C. Microscratch testing results of composites show that unfunctionalized CNTs cause deeper penetration of the indenter than polymer matrix at the same force; however, the composites developed with silanized CNTs present more regular behavior than polymer reinforced with unfunctionalized CNTs.


2014 ◽  
Vol 606 ◽  
pp. 221-224
Author(s):  
Jan Vácha

This paper examines mechanical properties of composites with thermoplastic polymer matrix and carbon nanotubes. Polyamide 6 was used as a basic matrix, to which nanoparticles in the form of nanotubes were added in a described proportion to the weight. Granulate was prepared by cold granulation in the worm extruder. Dried granulate was injected into the Arburg injection molding machine. Mechanical properties were evaluated by tensile and hardness test. These results were then compared with results achieved by polyamide 6 to which no fillers were added. Discussion analyses what is the influence of nanotubes fillers on crystallinity degree of the polymer matrix of polyamide 6. Conclusion evaluates and compares influence of presence of fillers on the mechanical properties of polypropylene matrix.


2021 ◽  
Vol 3 (12 (111)) ◽  
pp. 59-66
Author(s):  
Eduard Lysenkov ◽  
Leonid Klymenko

Polymeric materials that contain inorganic fillers demonstrate a unique set of physical properties due to the combination of matrix elasticity and filler strength. This paper reports determining the effect of dispersed aluminum particles on the properties of polyvinylidene fluoride-based materials. This study result is the fabrication of a series of composite materials using a piston extruder. Their functional characteristics have been explored using the methods of thermophysical and mechanical analysis, dilatometry, and acoustic spectroscopy. It was established that the introduction of dispersed aluminum particles leads to the loosening of the matrix, which may indicate the transition of macro macromolecules from the crystalline phase to the boundary layer around the filler. This feature of structure formation and the uniform distribution of filler particles ensured the improvement of the functional characteristics of the materials obtained. It has been shown that with an increase in the content of filler in the system to 5 % the thermal conductivity increases from 0.17 W/(m·K) to 1.55 W/(m·K). The introduction of the filler leads to an improvement in the heat resistance of the materials obtained, by 17 K. The increase in both melting point and destructiveness is explained by the formation of a more perfect polymer structure with a higher degree of crystallinity. An increase in the speed of ultrasound propagation was identified, by 67 %, as well as in the tensile strength, by 36 %, in the materials obtained, which can be explained by contributions from the filler, which has greater sound conductivity and mechanical strength than the polymer matrix. Such systems show the reinforcing effect of aluminum particles on the polymer matrix, so they could be used as structural materials with improved functional characteristics


2018 ◽  
Vol 53 (10) ◽  
pp. 1329-1336 ◽  
Author(s):  
J Greenhall ◽  
L Homel ◽  
B Raeymaekers

We introduce a new process to manufacture polymer nanocomposite materials reinforced with an ultra-high weight fraction of aligned carbon nanotubes. This process is based on using ultrasound directed self-assembly, which employs the force associated with a standing ultrasound wave to concentrate and align carbon nanotubes dispersed in the polymer matrix. In contrast with existing manufacturing processes, which typically limit the carbon nanotube weight fraction to approximately 1 wt.%, we demonstrate manufacturing polymer nanocomposite materials with more than 10 wt.% of aligned carbon nanotubes along a single line. We accomplish this by first dispersing 1 wt.% percent of carbon nanotubes in the polymer matrix, and using ultrasound directed self-assembly to concentrate and align the carbon nanotubes along a single line. Then, we trim the excess material around the single line of aligned carbon nanotubes to retain a nanocomposite material with an ultra-high weight percent of aligned carbon nanotubes. We also manufacture polymer nanocomposite materials with different weight percent of aligned carbon nanotubes along multiple parallel lines, and with randomly oriented carbon nanotubes. We experimentally measure the mechanical properties of the polymer nanocomposite materials, and find that the ultrasound directed self-assembly process results in specimens with aligned carbon nanotubes that display a significant increase in ultimate tensile strength, Young’s modulus, and moduli of resilience and toughness, compared to benchmark materials including polymer nanocomposite materials with randomly oriented carbon nanotubes, and virgin polymer matrix material.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3140
Author(s):  
Kamil Dydek ◽  
Anna Boczkowska ◽  
Rafał Kozera ◽  
Paweł Durałek ◽  
Łukasz Sarniak ◽  
...  

The main aim of this work was the investigation of the possibility of replacing the heavy metallic meshes applied onto the composite structure in airplanes for lightning strike protection with a thin film of Tuball single-wall carbon nanotubes in the form of ultra-light, conductive paper. The Tuball paper studied contained 75 wt% or 90 wt% of carbon nanotubes and was applied on the top of carbon fibre reinforced polymer before fabrication of flat panels. First, the electrical conductivity, impact resistance and thermo-mechanical properties of modified laminates were measured and compared with the reference values. Then, flat panels with selected Tuball paper, expanded copper foil and reference panels were fabricated for lightning strike tests. The effectiveness of lightning strike protection was evaluated by using the ultrasonic phased-array technique. It was found that the introduction of Tuball paper on the laminates surface improved both the surface and the volume electrical conductivity by 8800% and 300%, respectively. The impact resistance was tested in two directions, perpendicular and parallel to the carbon fibres, and the values increased by 9.8% and 44%, respectively. The dynamic thermo-mechanical analysis showed higher stiffness and a slight increase in glass transition temperature of the modified laminates. Ultrasonic investigation after lightning strike tests showed that the effectiveness of Tuball paper is comparable to expanded copper foil.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1106
Author(s):  
Alejandro Cortés ◽  
Xoan F. Sánchez-Romate ◽  
Alberto Jiménez-Suárez ◽  
Mónica Campo ◽  
Ali Esmaeili ◽  
...  

Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific sensors manufactured by DLP 3D printing technology with complex geometries: a spring, a three-column device and a footstep-sensing platform based on the three-column device. All of them show a great sensitivity of the measured electrical resistance to the applied load and high cyclic reproducibility, demonstrating their versatility and applicability to be implemented in numerous items in our daily lives or in industrial devices. Different types of carbon nanotubes—single-walled, double-walled and multi-walled CNTs (SWCNTs, DWCNTs, MWCNTs)—were used to evaluate the effect of their morphology on electrical and electromechanical performance. SWCNT- and DWCNT-doped nanocomposites presented a higher Tg compared with MWCNT-doped nanocomposites due to a lower UV light shielding effect. This phenomenon also justifies the decrease of nanocomposite Tg with the increase of CNT content in every case. The electromechanical analysis reveals that SWCNT- and DWCNT-doped nanocomposites show a higher electromechanical performance than nanocomposites doped with MWCNTs, with a slight increment of strain sensitivity in tensile conditions, but also a significant strain sensitivity gain at bending conditions.


Author(s):  
Fahad Saleem Ahmed Khan ◽  
N. M. Mubarak ◽  
Mohammad Khalid ◽  
Mohammad Mansoob Khan ◽  
Yie Hua Tan ◽  
...  

2021 ◽  
pp. 109679
Author(s):  
Yiwei Hu ◽  
Raj B. Ladani ◽  
Milan Brandt ◽  
Yazhi Li ◽  
Adrian P. Mouritz

2021 ◽  
pp. 002199832098764
Author(s):  
Mingren Jiang ◽  
Xianhua Cheng

Rare earth modified acidified carbon nanotubes were prepared by functionalization of acidified carbon nanotubes with different concentrations of LaCl3. The modification results were characterized by Fourier-transform infrared and X-ray photoelectron spectroscopy. The rare earth successfully increases the surface activity of the acidified carbon nanotubes. Polymer matrix composites were prepared by using the rare earth modified acidified carbon nanotubes as the reinforcement in epoxy matrix. Mechanical properties were analyzed by Zwick Z100 testing machine and the tribological behaviors were test by multifunctional tribological tester. Compared with pure epoxy (epoxy resin), the mechanical strength of the best composite sample was increased by 50–120%, the coefficient of friction was reduced by 19.4% and the wear rate was reduced by approximately 40 times. The experimental results show that the RE concentration of 0.2–0.3 wt% has the most obvious influence on the properties of polymer composites. The mechanism of rare earth reinforcement in polymer matrix is analyzed and suggested.


Sign in / Sign up

Export Citation Format

Share Document