scholarly journals Numerical simulation of a wave energy converter using linear generator

2013 ◽  
Vol 35 (2) ◽  
pp. 103-111 ◽  
Author(s):  
Dang The Ba

This paper presents results of numerical simulation for a wave energy converter using linear permanent magnet generator. The use of linear permanent generator has advantages of simple structure, minimizing mechanical loose... On the base of mechanics model, a system of equations describing the operation of the device under linear potential wave was obtained. The magnetic field in generator was calculated by Flex-PDE software. The system of movement equations was numerically solved with Matlab.Various calculations were performed with different parameters of wave conditions and device's structures to determine the device’s configuration for a 300 W output power for the offshore wave condition in South-Central offshore of Vietnam. The results also show potential of developing the wave energy conversion to meet the energy demand in some coastal and island regions of Vietnam.

2016 ◽  
Vol 693 ◽  
pp. 484-490
Author(s):  
Ying Xue Yao ◽  
Hai Long Li ◽  
Jin Ming Wu ◽  
Liang Zhou

Duck wave energy converter has the advantages of high conversion efficiency, simple construction, low cost relative to other wave power device. In the paper, the numerical simulation of the response of the converter was calculated by the AQWA software which based on the three dimensional potential flow theories. The results show that the pitch angle appear the peak when the incident wave frequency is 1rad/s and the maximum of the pitch angle come out as the linear wave normally incident the duck body, which means duck wave energy converter can absorb more wave energy in this angular frequency. The above research can provide reference for the design of the duck wave energy converter.


Author(s):  
Takeshi Kamio ◽  
Makoto Iida ◽  
Chuichi Arakawa

The purpose of this study is the numerical simulation and control optimization of a wave energy converter to estimate the power at a test site in the Izu Islands. In Japan, ocean energy is once again being seriously considered; however, since there are many inherent problems due to severe conditions such as the strong swells and large waves, estimations are important when designing such devices. The numerical simulation method in this study combines the wave interaction analysis software WAMIT and an in-house time-domain simulation code using the Newmark-β method, and introduces approximate complex-conjugate control into the code. The optimized parameters were assessed for a regular sine wave and an irregular wave with a typical wave spectrum. With the optimized parameters, average and maximum output power were estimated for the observed wave data at the test site. The results show a more than 100 kW average power output and a several times larger maximum power output.


Author(s):  
Aurélien Babarit ◽  
Benjamin Gendron ◽  
Jitendra Singh ◽  
Cécile Mélis ◽  
Philippe Jean

Since 2009, SBM Offshore has been developing the S3 Wave Energy Converter (S3 WEC). It consists in a long flexible tube made of an Electro-Active Polymer (EAP). Thus, the structural material is also the Power Take Off (PTO). In order to optimize the S3 WEC, a hydro-elastic numerical model able to predict the device dynamic response has been developed. The inner flow, elastic wall deformations and outer flow are taken into account in the model under the following assumptions: Euler equation is used for the inner flow. The flow is also assumed to be uniform. Elastic deformation of the wall tube is linearized. The outer flow is modeled using linear potential theory. These equations have been combined in order to build the numerical model. First, they are solved in the absence of the outer fluid in order to obtain the modes of response of the device. Secondly, the outer fluid is taken into account and the equation of motion is solved by making use of modal expansion. Meanwhile, experimental validation tests were conducted in the ocean basin at Ecole Centrale De Nantes. The scale model is 10m long tube made of EAP. The tube deformations were measured using the electro-active polymer. The model was also equipped with sensors in order to measure the inner pressure. Comparisons of the deformation rate between the numerical model and experimental results show good agreement, provided that the wall damping is calibrated. Eventually, results of a technico-economical parametric study of the dimensions of the device are presented.


2014 ◽  
Vol 64 ◽  
pp. 132-143 ◽  
Author(s):  
M. Anbarsooz ◽  
M. Passandideh-Fard ◽  
M. Moghiman

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 806 ◽  
Author(s):  
Laura Castro-Santos ◽  
Ana Bento ◽  
Carlos Guedes Soares

A technique to analyse the economic viability of offshore farms composed of wave energy converters is proposed. Firstly, the inputs, whose value will be considered afterwards in the economic step, was calculated using geographic information software. Secondly, the energy produced by each wave converter was calculated. Then the economic factors were computed. Finally, the restriction that considers the depth of the region (bathymetry) was put together with the economic outputs, whose value depends on the floating Wave Energy Converter (WEC). The method proposed was applied to the Cantabric and Atlantic coasts in the north of Spain, a region with a good offshore wave energy resource. In addition, three representative WECs were studied: Pelamis, AquaBuoy and Wave Dragon; and five options for electric tariffs were analysed. Results show the Wave Energy Converter that has the best results regarding its LCOE (Levelized Cost of Energy), IRR (Internal Rate of Return) and NPV (Net Present Value), and which area is best for the development of a wave farm.


2018 ◽  
Vol 147 ◽  
pp. 474-481 ◽  
Author(s):  
Mohammad Jafari ◽  
Aliakbar Babajani ◽  
Parinaz Hafezisefat ◽  
Mojtaba Mirhosseini ◽  
Alireza Rezania ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xuanlie Zhao ◽  
Dezhi Ning ◽  
Chongwei Zhang ◽  
Yingyi Liu ◽  
Haigui Kang

An oscillating buoy wave energy converter (WEC) integrated to an existing box-type breakwater is introduced in this study. The buoy is installed on the existing breakwater and designed to be much smaller than the breakwater in scale, aiming to reduce the construction cost of the WEC. The oscillating buoy works as a heave-type WEC in front of the breakwater towards the incident waves. A power take-off (PTO) system is installed on the topside of the breakwater to harvest the kinetic energy (in heave mode) of the floating buoy. The hydrodynamic performance of this system is studied analytically based on linear potential-flow theory. Effects of the geometrical parameters on the reflection and transmission coefficients and the capture width ratio (CWR) of the system are investigated. Results show that the maximum efficiency of the energy extraction can reach 80% or even higher. Compared with the isolated box-type breakwater, the reflection coefficient can be effectively decreased by using this oscillating buoy WEC, with unchanged transmission coefficient. Thus, the possibility of capturing the wave energy with the oscillating buoy WEC integrated into breakwaters is shown.


Sign in / Sign up

Export Citation Format

Share Document