scholarly journals Nonlinear post-buckling of thin FGM annular spherical shells under mechanical loads and resting on elastic foundations

2014 ◽  
Vol 36 (4) ◽  
pp. 291-306 ◽  
Author(s):  
Nguyen Dinh Duc ◽  
Vu Thi Thuy Anh ◽  
Dao Huy Bich

This paper presents an analytical approach to investigate the nonlinear buckling and post-buckling of thin annular spherical shells made of functionally graded materials (FGM) and subjected to mechanical load and resting on Winkler-Pasternak type elastic foundations. Material properties are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. Equilibrium and compatibility equations for annular spherical shells are derived by using the classical thin shell theory in terms of the shell deflection and the stress function. Approximate analytical solutions are assumed to satisfy simply supported boundary conditions and Galerkin method is applied to obtain closed-form of load-deflection paths. An analysis is carried out to show the effects of material and geometrical properties and combination of loads on the stability of the annular spherical shells.

Author(s):  
M. Bateni ◽  
M. R. Eslami

This work presents a closed form investigation on the effect of temperature gradient on the buckling resistance of functionally graded material (FGM) shallow arches. The constituents are assumed to vary smoothly through the thickness of the arch according to the power law distribution and they are assumed to be temperature dependent. The arches subjected to the both uniform distributed radial load and central concentrated load and both boundary supports are supposed to be pinned. The temperature field is approximated by one-dimensional linear gradient through the thickness of the arch and the displacement field approximated by classical arches model. Also, Donnell type kinematics is utilized to extract the suitable strain-displacement relations for shallow arches. Adjacent equilibrium criterion is used to buckling analysis, and, critical bifurcation load is obtain in the complete presence of pre-buckling deformations. Results discloses the usefulness of using the FGM shallow arches in thermal environment because the temperature gradient enhances the buckling resistance of these structures when they are subjected to a lateral mechanical load.


2009 ◽  
Vol 31 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Dao Huy Bich

In the present paper the non-linear buckling analysis of functionally graded spherical shells subjected to external pressure is investigated. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. In the formulation of governing equations geometric non-linearity in all strain-displacement relations of the shell is considered. Using Bubnov-Galerkin's method to solve the problem an approximated analytical expression of non-linear buckling loads of functionally graded spherical shells is obtained, that allows easily to investigate stability behaviors of the shell.


2017 ◽  
Vol 39 (4) ◽  
pp. 351-364
Author(s):  
Nguyen Minh Khoa ◽  
Hoang Van Tung

This paper presents an analytical approach to investigate the nonlinear axisymmetric response of moderately thick FGM sandwich shallow spherical shells resting on elastic foundations, exposed to thermal environments and subjected to uniform external pressure. Material properties are assumed to be temperature independent, and effective properties of FGM layer are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Formulations are based on first-order shear deformation shell theory taking geometrical nonlinearity, initial geometrical imperfection, Pasternak type elastic foundations and various degree of tangential constraint of boundary edge into consideration. Approximate solutions are assumed to satisfy clamped boundary condition and Galerkin method is applied to derive closed-form expressions of critical buckling loads and nonlinear load-deflection relation. Effects of geometrical parameters, thickness of face sheets, foundation stiffness, imperfection, thermal environments and degree of tangential edge constraints on the nonlinear stability of FGM sandwich shallow spherical shells are analyzed and discussed. 


2018 ◽  
Vol 27 (1) ◽  
pp. 096369351802700 ◽  
Author(s):  
Samir Brairi ◽  
Bachir Kerboua ◽  
Ismail Bensaid

In this paper, a new analytical solution is presented to predict the interfacial stresses of a functionally graded beam reinforced by a prestressed CFRP plate under thermo-mechanical load. A finite element (FE) analysis is also employed to validate the results of the analytical solution, the results from both models agreed very closely. Also, a parametric study is carried out in order to identify the effects of various material and geometrical properties on the magnitude of interfacial stresses. The presented results show that the interfacial stresses are highly concentrated at the end of the laminate, which can lead to a debonding at this location. Also, the material and geometrical properties have a significant impact on the magnitude of interfacial stresses. This new research approaches the practical reality of the structures in their environment by taking into consideration a combination of neglected terms by the other studies. Therefore, the results presented in this paper can serve as a benchmark for future analyses of functionally graded beams strengthened by prestressed Carbon fibre-rein-forced polymer (CFRP) plates and improve the rehabilitation, mechanical and corrosion resistance.


2018 ◽  
Vol 27 (6) ◽  
pp. 096369351802700
Author(s):  
Samir Brairi ◽  
Bachir Kerboua ◽  
Ismail Bensaid

In this paper, a new analytical solution is presented to predict the interfacial stresses of a functionally graded beam reinforced by a prestressed CFRP plate under thermo-mechanical load. A finite element (FE) analysis is also employed to validate the results of the analytical solution, the results from both models agreed very closely. Also, a parametric study is carried out in order to identify the effects of various material and geometrical properties on the magnitude of interfacial stresses. The presented results show that the interfacial stresses are highly concentrated at the end of the laminate, which can lead to a debonding at this location. Also, the material and geometrical properties have a significant impact on the magnitude of interfacial stresses. This new research approaches the practical reality of the structures in their environment by taking into consideration a combination of neglected terms by the other studies. Therefore, the results presented in this paper can serve as a benchmark for future analyses of functionally graded beams strengthened by prestressed Carbon fibre-rein-forced polymer (CFRP) plates and improve the rehabilitation, mechanical and corrosion resistance.


Author(s):  
Recep Gunes ◽  
M. Kemal Apalak ◽  
H. Abdullah Tasdemir

In this study, the post-buckling analysis of functionally graded cylindrical shells was carried out using the non-linear finite element method. The longitudinal shell edges were hinged under a central transverse concentrated load. The shells were composed of ceramic (Al2O3) and metal (Ni) phases and the mechanical properties at the region between the metal and ceramic layers vary continuously through the shell thickness according to a power-law distribution of the volume fractions of the constituents. The arc-length method was implemented. The effects of material composition and layer number as well as various shell thicknesses on the post-buckling response of the functionally graded cylindrical shells were investigated. The functionally graded shells exhibit both snap-through and snap-back post buckling behaviours. The layer number through the shell thickness has a minor effect on the post-buckling behaviour whereas the compositional gradient exponent varies from 0.1 to 10.0 the snap-through behaviour becomes more obvious whilst both the snap-through and snap-back behaviours appear for a thinner shell.


Sign in / Sign up

Export Citation Format

Share Document