scholarly journals Hydrogeology and origin of waters of the Panyam Volcanic Line springs, Jos Plateau, Nigeria

2021 ◽  
Vol 43 (2) ◽  
Author(s):  
Longpia C. B.

The PVL springs are used for both domestic and agricultural purposes. The seepage from the springs has resulted in producing a large expanse of wetlands and is therefore intensively use for dry season farming. The aim of this study was to determine the hydrogeological, hydrochemical characteristics, origin and their suitability for domestic and irrigation. The hydrogeology of the springs was determined by field mapping. The physico-chemical parameters were determined in the field and by laboratory methods. For the cation and anion analysis the ICP-MS and the wet methods were employed respectively. The stable isotope composition of oxygen (δ18O) and hydrogen (δ2H) were analyzed by Isotope Ratio Mass Spectrometer. The hydrochemical analysis revealed that the PVL springs waters are generally neutral with an average pH value of 7.3. The average TDS and EC values are 127.8mg/l and 246µs/cm respectively. These values fall within fresh water class. The average Mg2+,Ca2+, Na+ and K+ cation concentration values are 16.3mg/l, 15.8mg/l, 10.8mg/l and 5.58mg/l respectively. The average anions concentration of HCO3-, SO4 and Cl- are 140mg/l, 8.6mg/l and 3.4mg/l respectively. Piper trilinear diagram show that the spring waters is predominantly Mg-Ca-HCO3 water type with potable qualities based on WHO drinking water standards. The sodium Adsorption Ratio (SAR) and Sodium Soluble Percentage (SSP) values range between 0.44 to 0.84 and 26.4 to 54% respectively and falls within irrigation quality standards. Stable isotope compositions of δ18O and δ2H ranges from -3.60/00 to -4.90/00 and -200/00 to -280/00 respectively falls within the meteoric water composition. This is further affirmed by the δ2H versus δ18O plot on the correlation diagram with Standard Meteoric Water Line.

2021 ◽  
Vol 43 (2) ◽  
pp. 236-248
Author(s):  
Longpia C. B.

The PVL springs are used for both domestic and agricultural purposes. The seepage from the springs has resulted in producing a large expanse of wetlands and is therefore intensively use for dry season farming. The aim of this study was to determine the hydrogeological, hydrochemical characteristics, origin and their suitability for domestic and irrigation. The hydrogeology of the springs was determined by field mapping. The physico-chemical parameters were determined in the field and by laboratory methods. For the cation and anion analysis the ICP-MS and the wet methods were employed respectively. The stable isotope composition of oxygen (δ18O) and hydrogen (δ2H) were analyzed by Isotope Ratio Mass Spectrometer. The hydrochemical analysis revealed that the PVL springs waters are generally neutral with an average pH value of 7.3. The average TDS and EC values are 127.8mg/l and 246µs/cm respectively. These values fall within fresh water class. The average Mg2+,Ca2+, Na+ and K+ cation concentration values are 16.3mg/l, 15.8mg/l, 10.8mg/l and 5.58mg/l respectively. The average anions concentration of HCO3-, SO4 and Cl- are 140mg/l, 8.6mg/l and 3.4mg/l respectively. Piper trilinear diagram show that the spring waters is predominantly Mg-Ca-HCO3 water type with potable qualities based on WHO drinking water standards. The sodium Adsorption Ratio (SAR) and Sodium Soluble Percentage (SSP) values range between 0.44 to 0.84 and 26.4 to 54% respectively and falls within irrigation quality standards. Stable isotope compositions of δ18O and δ2H ranges from -3.60/00 to -4.90/00 and -200/00 to -280/00 respectively falls within the meteoric water composition. This is further affirmed by the δ2H versus δ18O plot on the correlation diagram with Standard Meteoric Water Line.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wesley P. Scott ◽  
Sergio Contreras ◽  
Gabriel J. Bowen ◽  
T. Elliott Arnold ◽  
Ramón Bustamante-Ortega ◽  
...  

AbstractWarming across the globe is expected to alter the strength and amount of regional precipitation, but there is uncertainty associated with the magnitude of these expected changes, and also how these changes in temperature and the hydrologic cycle will affect humans. For example, the climate in central-south Chile is projected to become significantly warmer and drier over the next several decades in response to anthropogenically driven warming, but these anthropogenic changes are superimposed on natural climate variability. The stable isotope composition of meteoric water provides significant information regarding the moisture source, pathways, and rain-out history of an air mass, but precipitation samples suitable for stable isotope measurements require long-term placement of field equipment making them difficult to obtain. The International Atomic Energy Agency (IAEA) Global Network of Isotopes in Precipitation (GNIP) stations generate isotopic and ancillary data of precipitation from many locations around the world, but remote areas of developing countries like Chile typically have sparse networks of meteorological stations, which inhibit our ability to accurately model regional precipitation. Central-south Chile, in particular, has a sparse network of GNIP stations and, as a result, the isotopic composition of meteoric water is underrepresented in the global database complicating efforts to constrain modern day hydroclimate variability as well as paleohydrologic reconstruction for southern South America. In this study, we measured the stable isotope compositions of hydrogen (δ2H) and oxygen (δ18O) in surface lacustrine waters of central-south Chile to determine what physical and/or climatic features are the dominant controls on lacustrine δ18O and δ2H composition, assess whether or not the isotopic composition of the lakes record time-averaged isotope composition of meteoric water, and determine whether an isoscape map based on lake surface waters could predict the H and O isotope compositions of precipitation at the few GNIP stations in the region.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 68
Author(s):  
Tamiru A. Abiye ◽  
Molla B. Demlie ◽  
Haile Mengistu

A comprehensive assessment of the stable isotope distribution in the groundwater systems of South Africa was conducted in relation to the diversity in the aquifer lithology and corresponding hydraulic characteristics. The stable isotopes of oxygen (18O) and hydrogen (2H) in groundwater show distinct spatial variation owing to the recharge source and possibly mixing effect in the aquifers with the existing water, where aquifers are characterized by diverse hydraulic conductivity and transmissivity values. When the shallow aquifer that receives direct recharge from rainfall shows a similar isotopic signature, it implies less mixing effect, while in the case of deep groundwater interaction between recharging water and the resident water intensifies, which could change the isotope signature. As aquifer depth increases the effect of mixing tends to be minimal. In most cases, the isotopic composition of recharging water shows depletion in the interior areas and western arid zones which is attributed to the depleted isotopic composition of the moisture source. The variations in the stable isotope composition of groundwater in the region are primarily controlled by the isotope composition of the rainfall, which shows variable isotope composition as it was observed from the local meteoric water lines, in addition to the evaporation, recharge and mixing effects.


2021 ◽  
Author(s):  
Jabar Abdul Bari ◽  
Karthikeyan Perumal ◽  
Subagunasekar Muthuramalingam

Abstract In most regions of the present study area, Bhavani Taluk, groundwater quality is deteriorating at an alarming rate as a result of anthropogenic activities, however, little attention was given to groundwater quality and management. This research examines the quality of groundwater in Bhavani Taluk, Tamilnadu and compares its suitability for irrigation. The Bhavani region of Erode District, Tamilnadu is the most cultivated, with a considerable use of fertilizers and pesticides. Groundwater quality for irrigation purposes was assessed during the pre-monsoon season by collecting samples from 53 different locations. Physico-chemical parameters such as pH, EC, TDS, HCO3−, CO32−, Cl−, SO42−, NO3−, Ca2+, Mg2+, Na+ and K+were measured in these groundwater samples. Irrigation quality measures such as salinity hazard, sodium hazard expressed as SAR, percentage of sodium (% Na), and permeability index (PI) were calculated to evaluate groundwater quality for agricultural irrigation. Based on the classification of Electrical conductivity (EC) most of the groundwater samples are falling under the permissible limit. As per the USSL diagram, the large majority of groundwater samples fall within the category of C3-S1 and the water is suitable for irrigation. Piper trilinear diagram interpretations were made to know the chemical type of the groundwaters. The piper diagram indicates that 50% of the groundwater sample were belongs to Mg2+, Ca2+, HCO3−, and Cl−. The groundwater samples fall under Class I category according to Doneen’s Classifications.


2020 ◽  
pp. 6-11
Author(s):  
Anton Kasatkin ◽  
Anna Nigmatullina ◽  
Mikhail Kopytov

The article presents the results of studies of osmolality and pH of 0,9 % sodium chloride of various manufacturers. To obtain data on the pH value, the data used in the passports are used, and the indicators of its osmolality are de- termined using laboratory tests. 0,9 % sodium chloride from different manufacturers has different pH and osmolality. Knowing the actual values of physico-chemical parameters can increase the accuracy of the results of future clinical studies, which compare the pharmacokinetics and pharmacodynamics of modern plasma-substituting solutions and a solution of 0,9 % sodium chloride.


2019 ◽  
Vol 98 ◽  
pp. 07013
Author(s):  
Thomas Kretzschmar ◽  
Matteo Lelli ◽  
Ruth Alfaro ◽  
Juan Ignacio Sanchez ◽  
Yann Rene Ramos

It is important to develop a regional hydrogeological model to identify possible recharge and discharge areas for a sustainable use of a geothermal reservoir. The Los Humeros geothermal area is situated within five surficial watersheds and coveres an area of more than 15.000 km2. A total of 208 well and spring samples were collected between June 2017 and November 2018. The stable isotope data for this region define a regression line of δDH2O = 8.032·δ18O + 12 and indicate that groundwater is recharged by regional precipitation. At least 39 groundwater wells, with a maximum temperature of 35 °C, show temperatures above the reported mean average surface temperature of 15 °C. Characteristic elements for geothermal reservoir fluids (B, Li, As) are also present in these groundwaters, indicating a possible connection between the reservoir fluid and the local groundwater through local fracture systems. Concentration of B in these hot wells is between 150 and 35000 ppb.


Sign in / Sign up

Export Citation Format

Share Document