scholarly journals Evaluation of Groundwater quality and suitability for irrigation using hydro-chemical process in Bhavani taluk, Erode District, Tamilnadu, India

Author(s):  
Jabar Abdul Bari ◽  
Karthikeyan Perumal ◽  
Subagunasekar Muthuramalingam

Abstract In most regions of the present study area, Bhavani Taluk, groundwater quality is deteriorating at an alarming rate as a result of anthropogenic activities, however, little attention was given to groundwater quality and management. This research examines the quality of groundwater in Bhavani Taluk, Tamilnadu and compares its suitability for irrigation. The Bhavani region of Erode District, Tamilnadu is the most cultivated, with a considerable use of fertilizers and pesticides. Groundwater quality for irrigation purposes was assessed during the pre-monsoon season by collecting samples from 53 different locations. Physico-chemical parameters such as pH, EC, TDS, HCO3−, CO32−, Cl−, SO42−, NO3−, Ca2+, Mg2+, Na+ and K+were measured in these groundwater samples. Irrigation quality measures such as salinity hazard, sodium hazard expressed as SAR, percentage of sodium (% Na), and permeability index (PI) were calculated to evaluate groundwater quality for agricultural irrigation. Based on the classification of Electrical conductivity (EC) most of the groundwater samples are falling under the permissible limit. As per the USSL diagram, the large majority of groundwater samples fall within the category of C3-S1 and the water is suitable for irrigation. Piper trilinear diagram interpretations were made to know the chemical type of the groundwaters. The piper diagram indicates that 50% of the groundwater sample were belongs to Mg2+, Ca2+, HCO3−, and Cl−. The groundwater samples fall under Class I category according to Doneen’s Classifications.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jasdeep Singh ◽  
Simerpreet Kaur Sehgal ◽  
Kuldip Singh ◽  
Didar Singh

AbstractThe present study focused on the seasonal investigation of hydro-geochemical characteristics of groundwater samples collected from the vicinity of three tributaries of the Beas River, Punjab, India. Total 45 samples were analyzed during the pre- and post-monsoon season for physico-chemical parameters and heavy metals along with health risk assessment. Results revealed that the majority of samples were below the permissible limits set by the BIS and WHO. The relative abundance of major cations was Ca2+ > Mg2+ > Na+ > K+ and Ca2+ > Na+ > Mg2+ > K+, while that of the major anions was HCO3− > SO42− > Cl− > CO32− in the pre- and post-monsoon season, respectively. Groundwater was alkaline and hard in nature at most of the sites. Bicarbonate content exceeded the desirable limit having an average concentration of 337.26 mg/L and 391.48 mg/L, respectively, during the pre- and post-monsoon season. Tukey’s multiple comparison test was applied for finding significant differences among samples at p < 0.05. The dominant hydrochemical face of water was Ca–Mg–HCO3 type. US salinity (USSL) diagram indicated that during the pre-monsoon, 48.9% samples were C2S1 type and remaining 51.1% were C3S1 type while during the post-monsoon all samples were C3S1 type. It indicates that groundwater of the study area is at risk of salinity hazards in future and is not to be ignored. Such monitoring studies are recommended to design future safety plans to combat soil and human health risks.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1321 ◽  
Author(s):  
Muhammad Aleem ◽  
Cao Shun ◽  
Chao Li ◽  
Arslan Aslam ◽  
Wu Yang ◽  
...  

The industrial augmentation and unguided anthropogenic activities contaminate water sources in most parts of the world especially in developing countries like Pakistan. High concentration of pollutants in groundwater affects human, soil, and crop health badly. The present study was conducted to investigate groundwater quality for drinking and irrigation purposes in an industrial zone of Pakistan. A GIS tool was used to investigate the spatial distribution of different physico-chemical parameters. In this study, the average results exceeding World Health Organization (WHO) and National Environmental Quality Standards (NEQS) were found for pH 7.84, total dissolved solids (TDS) 1492 mg/L, phosphate 0.51 mg/L, dissolved oxygen (DO) 9.92% saturation, F-coli 6.48 colonies/100 mL, Na+ 366 mg/L, HCO3− 771 mg/L, sulfate 251 mg/L, chlorides 427 mg/L, total hardness (as CaCO3) 292 mg/L, electrical conductivity (EC) 2408 μS/cm, iron (Fe) 0.48 mg/L, chrome (Cr) 0.50 mg/L, arsenic (As) 0.04 mg/L, total phosphorus (TP) 0.17 mg/L, sodium adsorption ratio (SAR) 9.76 (in meq/L), residual sodium carbonate (RSC) 9.28 meq/L, % ion balance 14.4 (in meq/L), percentage sodium ion (% Na+) concentration 58.9 meq/L, and water quality index (WQI) 69.0. The trend of cations and anions were (in meq/L) Na > Mg > Ca > K and HCO3 > Cl > CO3 > SO4 respectively. Although the results of the present study showed poor conditions of the groundwater for drinking as WQI but and irrigation purposes as SAR, it needs to improve some more conditions for the provision of safe drinking water and irrigation water quality.


2019 ◽  
Vol 10 (1) ◽  
pp. 22-28
Author(s):  
Sanober Rafi ◽  
Owais Niaz ◽  
Sadaf Naseem ◽  
Umair Majeed ◽  
Humaira Naz

This study is aimed to evaluate the groundwater quality of Gulshan-e-Iqbal and Liaquatabad towns inKarachi. Thirty (n=30) groundwater samples were randomly collected from different locations by electrically pumpedwells at various depths (14-91m). All the water samples were analyzed to determine their suitability for drinkingpurpose based on various physicochemical parameters. Data reveal that high concentration of TDS and hardness havedeteriorated the groundwater quality of study area. The main phenomenon responsible for groundwater pollution is theseawater intrusion due to the proximity of study area to the Arabian sea. Large scale unplanned urbanization, poorwaste management and other anthropogenic activities have also triggered the deterioration of groundwater quality.Study showed that local geology plays vital role in the distribution of major cations and anions. Data suggested thatground water of this study area is highly contaminated by seawater intrusion and considered not fit for drinkingpurpose.


2020 ◽  
Vol 9 (3) ◽  
pp. 237-254
Author(s):  
Maeyan Givi ◽  
◽  
Mahsa Jahangiri-Rad ◽  
Hamidreza Tashauoei ◽  
◽  
...  

Background: The physicochemical composition of groundwater is affected by the quantity and quality of surrounding aquifers which are in turn recharging from adjacent river waters. Methods: In the present study, 20 surface and 16 groundwater samples were collected in pre- and post-monsoon season from the Jajrood River basin, Tehran, Iran. The samples were analyzed for 18 physicochemical water quality characteristics to assess the river and groundwater qualities. Hydrogeochemical analyses of groundwater samples were also performed to determine the Water Quality Index (WQI) for drinking and evaluate factors governing the water quality characteristic in the study area. Accordingly, the Piper diagram and Gibbs and Chadha plots were drawn to assess seasonal variations in hydrochemical facies and processes in the basin. Subsurface soil samples were also examined with respect to the structure, elemental composition, and multi-elemental trace analysis. Results: Results showed the abundance of major ions in the order of Ca+2 >Na+>Mg+2>K+ for cations and HCO3- >SO42- >Cl- >NO3- >F- for anions. In general, all drinking groundwater samples met WHO permissible limits except for Chemical Oxygen Demand (COD) and HCO3-. Moreover, the water is categorized as Ca-Mg-HCO3 type. Subsurface soil analyses demonstrated quartz and calcium carbonate as the main phases of soil structure, suggesting the enrichment of groundwater with temporary hardness. Conclusion: Overall, the groundwater quality was suitable for drinking and agricultural activities.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Kshitindra Kr. Singh ◽  
Geeta Tewari ◽  
Suresh Kumar

In the present study, the groundwater quality for suitability in agriculture from Udham Singh Nagar district, Uttarakhand, has been evaluated. A total of 50 groundwater samples have been collected and analysed for pH, EC, TH, HCO3−, CO32−, Cl−, SO42−, NO3–, Ca2+, Mg2+, Na+ and K+. To assess the groundwater quality for irrigation purpose, parameters like sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium hazards (MHs), permeability index (PI), and chloroalkaline index (CAI) values have been calculated. In USSL diagram, most of the groundwater samples fall in the C2S1 category and were safe for irrigation purpose. Only seven groundwater samples fall in the C3S1 category, indicating medium to high salinity which is safe for irrigation purpose for all types of soils but with limited care of exchangeable sodium. On the basis of RSC, all groundwater samples were observed to be suitable for irrigation purpose. Piper diagram indicated that 50% of the groundwater samples belonged to the Mg2+-Ca2+-HCO3− type and 48% was classified as the Ca2+-Mg2+-Cl− type. Durov diagram suggested possibilities of ion mixing and simple dissolution of ions from polluted soil.


Author(s):  
Keerthy K. ◽  
Sheik Abdullah A. ◽  
Chandran S.

Urbanization, industrialization, and increase in population lead to depletion of ground water quantity and also deteriorate the ground water quality. Madurai city is one of the oldest cities in India. In this chapter the ground water quality was assessed using various statistical techniques. Groundwater samples were collected from 11 bore wells and 5 dug wells in Post-monsoon season during 2002. Samples were analysed for physico-chemical characterization in the laboratory. Around 17 physico-chemical parameters were analysed for all the samples. The descriptive statistical analysis was done to understand the correlation between each parameter. Cluster Analysis was carried out to identify the most affected bore well and dug well in the Madurai city.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 617
Author(s):  
Gopal Krishan ◽  
Priyanka Sejwal ◽  
Anjali Bhagwat ◽  
Gokul Prasad ◽  
Brijesh Kumar Yadav ◽  
...  

In the present study, a total of sixty groundwater samples, twenty each for the pre-monsoon, monsoon and post monsoon seasons of 2018, were collected from selected locations in the Mewat district of Haryana, India. Electrical conductivity (EC) was measured at the site and total dissolved solids (TDS) were estimated. Samples were analysed for anions (chloride, sulphate, and bicarbonate) and cations (calcium, potassium, magnesium, and sodium). Multiple regression analysis was performed to analyse the data and report the dominant ions. Piper trilinear diagram and Gibbs plots were used to find out the water type and the factors controlling the chemistry of the groundwater, respectively. The saturation index of CaCO3, CaSO4 and NaCl was determined, using the PHREEQC MODEL. Sodium and calcium among cations, and chloride among the anions, had the highest degree of affinity and strong significance for all three seasons. The calcium–chloride water type dominated for all three seasons and Gibbs plot depicted that most of the Na+/Na+ + Ca2+ and Cl−/Cl− + HCO3− ratios show the weathering of rocks to form minerals as the major reason behind the ionic chemistry of the groundwater. The highest level of dissolution is encountered in the case of NaCl, followed by CaSO4, whereas CaCO3 depicts precipitation. The geochemical aspects of weathering, evaporation and ion exchange are the major processes responsible for high salinity, and anthropogenic activities are leading to its expansion. The findings from this study will be useful in management and remediation of groundwater salinity of the region.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ajay Govind Bhatt ◽  
Anand Kumar ◽  
Priya Ranjan Trivedi

AbstractThis study is conducted along the middle Gangetic floodplain, to investigate the hydrogeochemical characteristics and suitability of groundwater for irrigation and human consumptions. Altogether 65 groundwater samples were collected and analyzed for major ions and water quality parameters. pH of all the samples except 1 is found > 7, which suggests alkaline aquifer condition. Groundwater samples predominately belong to Ca-Mg-HCO3 water type followed by Na-HCO3, Mg-HCO3 and Mg-SO4 water types. Hierarchical cluster analysis (HCA) combines groundwater into two distinct groups, Group 1 is found as less mineralized as the average EC value is found 625.3 μS/cm, while it is found 1375 μS/cm for Group 2. The results of correlation analysis and PCA suggest influence of natural and anthropogenic activities on groundwater. PCA extracts four major PCs which describes 71.7% of total variance. PC1 indicates influence of both lithogenic and anthropogenic activities on groundwater quality. PC2 and PC3 infer natural factors, and PC4 suggests influence of anthropogenic activities on groundwater. Exceeding concentration of F−, Fe and Mn above WHO guidelines are found as major public health concern. WQI of all except 4 groundwater samples suggests excellent to good water quality; however, 23% of the samples are not suitable based on WPI values. Irrigation indices suggest that groundwater is mostly suitable for irrigation; however, 10.7%, 12.3% and 3% samples for RSBC, MAR and KR, respectively, exceed the recommended limits and are unsuitable for irrigation. A proper management strategy and quality assurance is recommended before groundwater consumption and use in the study area.


2021 ◽  
Vol 43 (2) ◽  
Author(s):  
Longpia C. B.

The PVL springs are used for both domestic and agricultural purposes. The seepage from the springs has resulted in producing a large expanse of wetlands and is therefore intensively use for dry season farming. The aim of this study was to determine the hydrogeological, hydrochemical characteristics, origin and their suitability for domestic and irrigation. The hydrogeology of the springs was determined by field mapping. The physico-chemical parameters were determined in the field and by laboratory methods. For the cation and anion analysis the ICP-MS and the wet methods were employed respectively. The stable isotope composition of oxygen (δ18O) and hydrogen (δ2H) were analyzed by Isotope Ratio Mass Spectrometer. The hydrochemical analysis revealed that the PVL springs waters are generally neutral with an average pH value of 7.3. The average TDS and EC values are 127.8mg/l and 246µs/cm respectively. These values fall within fresh water class. The average Mg2+,Ca2+, Na+ and K+ cation concentration values are 16.3mg/l, 15.8mg/l, 10.8mg/l and 5.58mg/l respectively. The average anions concentration of HCO3-, SO4 and Cl- are 140mg/l, 8.6mg/l and 3.4mg/l respectively. Piper trilinear diagram show that the spring waters is predominantly Mg-Ca-HCO3 water type with potable qualities based on WHO drinking water standards. The sodium Adsorption Ratio (SAR) and Sodium Soluble Percentage (SSP) values range between 0.44 to 0.84 and 26.4 to 54% respectively and falls within irrigation quality standards. Stable isotope compositions of δ18O and δ2H ranges from -3.60/00 to -4.90/00 and -200/00 to -280/00 respectively falls within the meteoric water composition. This is further affirmed by the δ2H versus δ18O plot on the correlation diagram with Standard Meteoric Water Line.


Author(s):  
Thangavelu Arumugam ◽  
Praveen Krishna ◽  
Sapna K

Groundwater is an important role of the environment in natural resources. The major sources of groundwater contamination in this study were open discharges of domestic sewage, inadequate sewerage system, open defecation, septic tanks, soak pits, contaminated water pools, unorganized solid waste dumping and use of fertilizers, pesticides for agriculture deteriorated the condition. In this present study revealed that the physical and chemical characteristics of ground water in different areas of Kannur district in Kerala have been determined different seasons with respect to its suitability for drinking and agricultural purposes. For this study the groundwater samples were collected during pre-monsoon and post-monsoon seasons from 70 wells representing the entire the study area. The groundwater samples were analyzed for Physico-chemical characteristics using standard techniques in laboratory and compared with standards. The samples were analyzed with reference to the WHO and BIS standards. The groundwater quality information of the entire study area have been prepared using statistical and GIS technique for all the parameters. This paper proved in GIS will be helpful for measuring, monitoring and managing the groundwater pollution in the study area and suggested to protect groundwater resources in the environment.


Sign in / Sign up

Export Citation Format

Share Document