scholarly journals Accuracy assessment of extreme learning machine in predicting soil compression coefficient

Author(s):  
Hai-Bang Ly ◽  
Panagiotis G. Asteris ◽  
Thai Binh Pham

The compression coefficient (Cc) is an important soil mechanical parameter that represents soil compressibility in the process of consolidation. In this study, a machine learning derived model, namely extreme learning algorithm (ELM), was used to predict the Cc of soil. A total of 189 experimental results were used and randomly divided to construct the training and testing parts for the development and validation of ELM. Monte Carlo approach was applied to take into account the random sampling of samples constituting the training dataset. A number of 13 input parameters reflecting the experiment were used as the input variables to predict the output Cc. Several statistical criteria, such as mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (R) and the Monte Carlo convergence estimator were used to assess the performance of ELM in predicting the Cc of soil. The results showed that ELM had a strong capacity to predict the Cc of soil, with the R value > 0.95. The convergence of results, as well as the capability of ELM were fully investigated to understand the advantage of using ELM as a predictor.

2019 ◽  
Vol 10 (1) ◽  
pp. 67 ◽  
Author(s):  
Hossein Moayedi ◽  
Dieu Tien Bui ◽  
Anastasios Dounis ◽  
Phuong Thao Thi Ngo

Employing league championship optimization (LCA) technique for adjusting the membership function parameters of the adaptive neuro-fuzzy inference system (ANFIS) is the focal objective of the present study. The mentioned optimization is carried out for better estimation of the soil compression coefficient (SCC) using twelve key factors of soil, namely depth of sample, percentage of sand, percentage of loam, percentage of clay, percentage of moisture content, wet density, dry density, void ratio, liquid limit, plastic limit, plastic Index, and liquidity index. This information is widely useable in designing high-rise buildings located in smart cities. Notably, the used data is collocated from a real-world construction project in Vietnam. The hybrid ensemble of LCA-ANFIS is developed, and the best structure is determined by a three-step sensitivity analysis process. The prediction accuracy of the proposed hybrid model is compared with typical ANFIS to examine the efficiency of the combined LCA. Based on the results, applying the LCA algorithm lead to a 4.88% and 6.19% decrease in prediction error, in terms of root mean square error and mean absolute error, respectively. Moreover, the correlation index rose from 0.7351 to 0.7539, which indicates the higher consistency of the hybrid model results. Due to the acceptable accuracy of the proposed LCA-ANFIS model, it can be a promising alternative to common empirical and laboratory methods.


2020 ◽  
Vol 12 (6) ◽  
pp. 2339 ◽  
Author(s):  
Binh Thai Pham ◽  
Trung Nguyen-Thoi ◽  
Hai-Bang Ly ◽  
Manh Duc Nguyen ◽  
Nadhir Al-Ansari ◽  
...  

Machine Learning (ML) has been applied widely in solving a lot of real-world problems. However, this approach is very sensitive to the selection of input variables for modeling and simulation. In this study, the main objective is to analyze the sensitivity of an advanced ML method, namely the Extreme Learning Machine (ELM) algorithm under different feature selection scenarios for prediction of shear strength of soil. Feature backward elimination supported by Monte Carlo simulations was applied to evaluate the importance of factors used for the modeling. A database constructed from 538 samples collected from Long Phu 1 power plant project was used for analysis. Well-known statistical indicators, such as the correlation coefficient (R), root mean squared error (RMSE), and mean absolute error (MAE), were utilized to evaluate the performance of the ELM algorithm. In each elimination step, the majority vote based on six elimination indicators was selected to decide the variable to be excluded. A number of 30,000 simulations were conducted to find out the most relevant variables in predicting the shear strength of soil using ELM. The results show that the performance of ELM is good but very different under different combinations of input factors. The moisture content, liquid limit, and plastic limit were found as the most critical variables for the prediction of shear strength of soil using the ML model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shotaro Asano ◽  
Ryo Asaoka ◽  
Hiroshi Murata ◽  
Yohei Hashimoto ◽  
Atsuya Miki ◽  
...  

AbstractWe aimed to develop a model to predict visual field (VF) in the central 10 degrees in patients with glaucoma, by training a convolutional neural network (CNN) with optical coherence tomography (OCT) images and adjusting the values with Humphrey Field Analyzer (HFA) 24–2 test. The training dataset included 558 eyes from 312 glaucoma patients and 90 eyes from 46 normal subjects. The testing dataset included 105 eyes from 72 glaucoma patients. All eyes were analyzed by the HFA 10-2 test and OCT; eyes in the testing dataset were additionally analyzed by the HFA 24-2 test. During CNN model training, the total deviation (TD) values of the HFA 10-2 test point were predicted from the combined OCT-measured macular retinal layers’ thicknesses. Then, the predicted TD values were corrected using the TD values of the innermost four points from the HFA 24-2 test. Mean absolute error derived from the CNN models ranged between 9.4 and 9.5 B. These values reduced to 5.5 dB on average, when the data were corrected using the HFA 24-2 test. In conclusion, HFA 10-2 test results can be predicted with a OCT images using a trained CNN model with adjustment using HFA 24-2 test.


2021 ◽  
Author(s):  
Lucas Barth Silva ◽  
Roberto Zanetti Freire ◽  
Osíris Canciglieri Junior

Given the social importance of energy, there is a concern to promote the sustainable development of the sector. Aiming at this evolution, from the 90s onwards, a wave of liberalization in the sector began to emerge in various parts of the world. These measures promoted an increase in the dynamism of commercial transactions and the transformation of electricity into a commodity. Consequently, futures, short-term, and spot markets were created. In this context, and due to the volatility of energy prices, the forecast of monetary values has become strategic for traders. This work aims to apply a computational intelligence model using Wavelet Transform on input values and the Extreme Machine Learning algorithm for training and prediction (W-ELM). The macro parameters were optimized using the Particle Swarm Optimization algorithm and for the selection of the input variables, a model based on Mutual Information (MI) was used. In the end, the methodology was compared with the traditional methods: Autoregressive Moving Averages (ARIMA) and General Autoregressive Conditional Heteroskedasticity (GARCH) models. Results showed that the W-ELM had better performance for forecasting 1 to 4 weeks of when compared to ARIMA. When the GARCH model results were considered, the proposed method provided worse performance only for 1 step ahead forecasting.


2019 ◽  
Author(s):  
Andrew Medford ◽  
Shengchun Yang ◽  
Fuzhu Liu

Understanding the interaction of multiple types of adsorbate molecules on solid surfaces is crucial to establishing the stability of catalysts under various chemical environments. Computational studies on the high coverage and mixed coverages of reaction intermediates are still challenging, especially for transition-metal compounds. In this work, we present a framework to predict differential adsorption energies and identify low-energy structures under high- and mixed-adsorbate coverages on oxide materials. The approach uses Gaussian process machine-learning models with quantified uncertainty in conjunction with an iterative training algorithm to actively identify the training set. The framework is demonstrated for the mixed adsorption of CH<sub>x</sub>, NH<sub>x</sub> and OH<sub>x</sub> species on the oxygen vacancy and pristine rutile TiO<sub>2</sub>(110) surface sites. The results indicate that the proposed algorithm is highly efficient at identifying the most valuable training data, and is able to predict differential adsorption energies with a mean absolute error of ~0.3 eV based on <25% of the total DFT data. The algorithm is also used to identify 76% of the low-energy structures based on <30% of the total DFT data, enabling construction of surface phase diagrams that account for high and mixed coverage as a function of the chemical potential of C, H, O, and N. Furthermore, the computational scaling indicates the algorithm scales nearly linearly (N<sup>1.12</sup>) as the number of adsorbates increases. This framework can be directly extended to metals, metal oxides, and other materials, providing a practical route toward the investigation of the behavior of catalysts under high-coverage conditions.


2019 ◽  
Vol XVI (4) ◽  
pp. 95-113
Author(s):  
Muhammad Tariq ◽  
Tahir Mehmood

Accurate detection, classification and mitigation of power quality (PQ) distortive events are of utmost importance for electrical utilities and corporations. An integrated mechanism is proposed in this paper for the identification of PQ distortive events. The proposed features are extracted from the waveforms of the distortive events using modified form of Stockwell’s transform. The categories of the distortive events were determined based on these feature values by applying extreme learning machine as an intelligent classifier. The proposed methodology was tested under the influence of both the noisy and noiseless environments on a database of seven thousand five hundred simulated waveforms of distortive events which classify fifteen types of PQ events such as impulses, interruptions, sags and swells, notches, oscillatory transients, harmonics, and flickering as single stage events with their possible integrations. The results of the analysis indicated satisfactory performance of the proposed method in terms of accuracy in classifying the events in addition to its reduced sensitivity under various noisy environments.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mu Sook Lee ◽  
Yong Soo Kim ◽  
Minki Kim ◽  
Muhammad Usman ◽  
Shi Sub Byon ◽  
...  

AbstractWe examined the feasibility of explainable computer-aided detection of cardiomegaly in routine clinical practice using segmentation-based methods. Overall, 793 retrospectively acquired posterior–anterior (PA) chest X-ray images (CXRs) of 793 patients were used to train deep learning (DL) models for lung and heart segmentation. The training dataset included PA CXRs from two public datasets and in-house PA CXRs. Two fully automated segmentation-based methods using state-of-the-art DL models for lung and heart segmentation were developed. The diagnostic performance was assessed and the reliability of the automatic cardiothoracic ratio (CTR) calculation was determined using the mean absolute error and paired t-test. The effects of thoracic pathological conditions on performance were assessed using subgroup analysis. One thousand PA CXRs of 1000 patients (480 men, 520 women; mean age 63 ± 23 years) were included. The CTR values derived from the DL models and diagnostic performance exhibited excellent agreement with reference standards for the whole test dataset. Performance of segmentation-based methods differed based on thoracic conditions. When tested using CXRs with lesions obscuring heart borders, the performance was lower than that for other thoracic pathological findings. Thus, segmentation-based methods using DL could detect cardiomegaly; however, the feasibility of computer-aided detection of cardiomegaly without human intervention was limited.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1549
Author(s):  
Robert D. Chambers ◽  
Nathanael C. Yoder ◽  
Aletha B. Carson ◽  
Christian Junge ◽  
David E. Allen ◽  
...  

Collar-mounted canine activity monitors can use accelerometer data to estimate dog activity levels, step counts, and distance traveled. With recent advances in machine learning and embedded computing, much more nuanced and accurate behavior classification has become possible, giving these affordable consumer devices the potential to improve the efficiency and effectiveness of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at sub-second resolution using commercial pet activity monitors. We built machine learning training databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production on more than 11 million days of device data. We then surveyed project participants representing 10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drinking behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870, 0.997), and sniffing (0.610, 0.968). We show that the devices’ position on the collar had no measurable impact on performance. In production, users reported a true positive rate of 95.3% for eating (among 1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate detection of important health-related canine behaviors using a collar-mounted accelerometer. We trained and validated our algorithms on a large and realistic training dataset, and we assessed and confirmed accuracy in production via user validation.


Sign in / Sign up

Export Citation Format

Share Document