scholarly journals Effect of Oxygen Pressure on Transport Propeties of Al-doped ZnO Films Grown by PED

2012 ◽  
Vol 22 (2) ◽  
pp. 155 ◽  
Author(s):  
Ngo Dinh Sang ◽  
Pham Hong Quang ◽  
Do Quang Ngoc

Al-doped ZnO films were grown by pulsed electron deposition (PED) at room temperature and 400 oC and at the oxygen pressure ranged from 3 mTorr to 20 mTorr. Transport properties were measured by van der Pauw technique. Crystallinity of the films was characterized by X-ray diffraction. It was found that the films grown at room temperature have a very high resistivity due to poor crystallinity. For the films grown at 400 o C, the obtained results indicate that the film grown at a lower pressure has a higher carrier mobility as well as a higher carrier concentration, resulting in a lower resistivity. This phenomenon has been discussed in term of the concentration of oxygen vacancies and the number of traps for carriers.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Prashant Pradhan ◽  
Juan Carlos Alonso ◽  
Monserrat Bizarro

ZnO and Al doped ZnO films were produced by spray pyrolysis. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy, and photoluminescence. Their photocatalytic activity was evaluated by the decomposition of the methyl orange dye using different light sources: ultraviolet light, artificial white light, and direct sunlight. The films were also tested under darkness for comparison. The ZnO films were able to degrade the test pollutant under UV and sunlight in more than a 60% after 180 min of irradiation and a scarce degradation was obtained using white light. However, the Al doped ZnO films presented a very high degradation rate not only under UV and sunlight (100% degradation), but also under white light (90% degradation after the same irradiation time). An unexpected high degradation was also obtained in the dark, which indicates that a nonphotonic process is taking place parallel to the photocatalytic process. This can be due to the extra electrons—provided by the aluminum atoms—that migrate to the surface and produce radicals favoring the decomposition process even in the dark. The high activity achieved by the ZnO: Al films under natural conditions can be potentially applied to water treatment processes.


2013 ◽  
Vol 544 ◽  
pp. 234-237
Author(s):  
Mei Ai Lin ◽  
Lin Jun Wang ◽  
Jian Huang ◽  
Ke Tang ◽  
Bing Ren ◽  
...  

Li-doped zinc oxide (ZnO) films were deposited on nucleation side of freestanding diamond (FSD) films by the radio frequency magnetron sputtering method. The effect of oxygen partial pressure on structural, optical and electrical properties of the ZnO films was investigated by X-ray diffraction (XRD) Raman spectroscopy, semiconductor characterization system and Hall effect measurement system. The results showed that the introduction of oxygen as a reactive gas was helpful to improve the crystalline quality of Li-doped ZnO films.


2011 ◽  
Vol 239-242 ◽  
pp. 2835-2838
Author(s):  
Yun Kai Qi ◽  
Jian Jun Gu ◽  
Li Hu Liu ◽  
Hui Yuan Sun

Al doped ZnO films have been prepared by dc magnetron sputtering. These films were annealed in different atmosphere and temperature. The crystal structures were analyzed by x-ray diffraction (XRD), and the magnetic properties were measured by a Physical Properties Measurement System (PPMS) with the magnetic field paralleled to the films plane. The results show the microstructure and magnetic properties were influenced by annealing atmosphere. Compared to the films annealed in vacuum, the films annealed in air shows obvious room temperature ferromagnetism, the magnetic moment increases about an order of magnitude. The room temperature ferromagnetism may be associated with a charge transfer between Al and Zn and the variational position of Al in ZnO films in different annealing ambience.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1023 ◽  
Author(s):  
Ashish Chhaganlal Gandhi ◽  
Chia-Liang Cheng ◽  
Sheng Yun Wu

We report the synthesis of room temperature (RT) stabilized γ–Bi2O3 nanoparticles (NPs) at the expense of metallic Bi NPs through annealing in an ambient atmosphere. RT stability of the metastable γ–Bi2O3 NPs is confirmed using synchrotron radiation powder X-ray diffraction and Raman spectroscopy. γ–Bi2O3 NPs exhibited a strong red-band emission peaking at ~701 nm, covering 81% integrated intensity of photoluminescence spectra. Our findings suggest that the RT stabilization and enhanced red-band emission of γ‒Bi2O3 is mediated by excess oxygen ion vacancies generated at the octahedral O(2) sites during the annealing process.


2009 ◽  
Vol 60 (4) ◽  
pp. 214-217 ◽  
Author(s):  
L.J. Zhuge ◽  
X.M. Wu ◽  
Z.F. Wu ◽  
X.M. Chen ◽  
Y.D. Meng

1992 ◽  
Vol 285 ◽  
Author(s):  
L. Rimai ◽  
R. Ager ◽  
J. Hangas ◽  
E. M. Loaothetis ◽  
Nayef Abu-ageel ◽  
...  

ABSTRACTAblation of ceramic silicon carbide with 351 nm excimer radiation was used to depositSIC films on fused silica and on sapphire. For deposition temperatures above 850° C, diffraction shows the films to be crystalline with the [111] axis preferentially oriented normally to the film. Optical spectra show an indirect energy gap at 2.2 eV, near that for the cubic polytype, although the 200 diffractions are absent. Room temperature resistivities range between .02 to .1 Ωcm. Deposition below 600° C yields amorphous SiC with no diffraction bands, low and variable optical band gap and very high resistivity.


2012 ◽  
Vol 560-561 ◽  
pp. 820-824
Author(s):  
Yue Zhi Zhao ◽  
Fei Xiong ◽  
Guo Mian Gao ◽  
Shi Jing Ding

Mn-doped ZnO thin films were prepared on SiO2substrates by using a radio-frequency(rf) magnetron sputtering in order to investigate structure and optical proprieties of the films. X-ray diffraction (XRD), Atomic force microscope (AFM) and UV-VIS spectrophotometry were employed to characterize the Mn-doped ZnO films. The results showed that the shape of the XRD spectrum was remarkably similar to that of the un-doped ZnO film; the film had mainly (002) peak, and indicate that the structure of the films was not disturbed by Mn-doped. The film had rather flat surfaces with the peak-to-tail roughness of about 25nm. Mn-doping changed the band gap of the films, which increased with the increase of the Mn content.


Sign in / Sign up

Export Citation Format

Share Document