scholarly journals Chemical composition and cytotoxic activity of the essential oils of Cymbopogon citratus L. Grown in phu tho province

2018 ◽  
Vol 14 (4) ◽  
pp. 683-687 ◽  
Author(s):  
Hoang Thi Kim Van ◽  
Nguyen Minh Quy ◽  
Do Thi Vinh Ha ◽  
Nguyen Thanh Hai ◽  
Hoang Thi Ly ◽  
...  

Culms and leaves of Cymbopogon citratus L. were collected from two regions of Phu Tho province (Thanh Son and Phu Ninh) and used as materials for essential oil extraction. Oils obtained were steam-distilled, analyzed for chemical composition and evaluated for cytotoxic activity against three different cancer cell lines. The GC/MS analysis showed that citral is the major content of the steam-distilled essential oils which was found in the range of 64.15-76.22%. Camphene was found only in culm oils of both regions but it was not detected in the leaf oils. Interestingly, the isomer forms of ocimene present at higher content in the culm oils than in the leaf oils whereas myrcene content in the leaf oils is higher than that in the culm oils. In a cytotoxicity test, four essential oils of culms and leaves of C. citratus from Thanh Son and Phu Ninh showed potent activity against A549 (human lung carcinoma) cell line with the IC50 values ranging from 4.01±0.39 to 6.3±0.54 µg/ml. The essential oils (culms and leaves) from Phu Ninh exhibited moderate effects on the Hela (human cervical adenocarcinoma) cells with the IC50 values of 19.43±1.16 and 42±2.41 µg/ml, respectively. However, they were inactive against the human hepatocellular carcinoma Hep3B cell line. The essential oils from Thanh Son exhibited potent cytotoxic activity against Hela and Hep3B cell lines with the IC50 values ranging from 1.18±0.26 to 8.91±0.32 µg/ml. The results indicated that the essential oils of C. citratus from Thanh Son, Phu Tho could be considered as a promising candidate for the natural sources of anticancer agents.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1394-1394
Author(s):  
Mitsuteru Hiwatari ◽  
Jingqiu Dai ◽  
Wei Liu ◽  
Yu-Dong Zhou ◽  
Dale G. Nagle ◽  
...  

Abstract Quassinoids are natural product compounds known to possess tumor cytotoxicity and antimalarial activity. Neosergiolide and isobrucein B are two quassinoids previously isolated from roots and stems of Picrolemma sprucei. In screening studies to identify inhibitors that target STAT3, we discovered neosergeolide and isobrucein B as active compounds. Approximately 5000 plant-derived extracts were screened using a cell line that stably expresses a STAT3-dependent luciferase reporter and NPM-ALK, which constitutively induces STAT3 transcriptional activity. Of 25 total hits, a P. sprucei extract was potent and selective for STAT3 inhibition, and bioassay-guided isolation identified neosergeolide and isobrucein B as the inhibitory compounds. Western blot analysis confirmed that neosergeolide and isobrucein B not only inhibit the tyrosine phosphorylation and activation of STAT3 but also decrease total STAT3 protein levels via a mechanism due in part to enhanced proteasome-mediated degradation. Small-molecule proteasome inhibitors such as MG132 and ALLN reversed the ability of the two quassinoids to decrease STAT3 protein levels; furthermore, simultaneous incubation of various hematopoietic malignancy cell lines with either neosergeolide or isobrucein B and MG132 or ALLN antagonized the cytotoxic activity of the quassinoids. Assessment of neosergiolide and isobrucein B antitumor effects using an XTT assay revealed both compounds to possess potent cytotoxic activity across a broad spectrum of hematopoietic malignancies, with T-leukemias/lymphomas being especially responsive. For example, mycosis fungoides (MF)- and Sezary syndrome (SS)-derived cell lines, as well as non-MF/SS cutaneous T-cell lymphoma (CTCL) lines, were potently inhibited by both quassinoids (neosergiolide IC50 values: MAC-1, 11.6 nM; MAC-2A, 6.9 nM; Hut-78, 6.6 nM; HH, 4.3 nM; MJ, 7.0 nM; isobrucein B IC50 values: MAC-1, 31.9 nM; MAC-2A, 72.3 nM; Hut-78, 23.5 nM; HH; 20.3 nM; MJ, 13.5 nM). Non-hematopoietic cell lines representing various solid tumors also exhibited potent cytotoxic responses to the quassinoids (e.g., gastric carcinoma line AGS [neosergiolide IC50: 16.9 nM; isobrucein B IC50: 114.9 nM]). With rare exceptions, the cytotoxicity of the quassinoids against a specific tumor cell line correlated with STAT3 activation status; for example, breast cancer line MCF7 with inactive STAT3 was resistant to both quassinoids even at the maximum concentration tested (6.25 μM), whereas breast cancer lines MDA-MB-468 and MDA-MB-435s with activated STAT3 were inhibited by both compounds at low concentrations (neosergiolide IC50: MDA-MB-435s, 31.3 nM; MDA-MB-468, 29.9 nM; isobrucein B IC50: MDA-MB-435s, 209.3 nM; MDA-MB-468, 356.8 nM). The in vitro antitumor activity of the two quassinoids could also be demonstrated in vivo. For example, isobrucein B (1.0 mg/kg IP once q 3d x 5 doses) could be safely administered and potently inhibited the growth in SCID mice of the CD30+ primary CTCL MAC-1 cell line; mice at treatment day 16 showed average subcutaneous tumor volumes of 3839 ± 863 (s.e.) mm3 in the vehicle-control group and 913 ± 349 (s.e.) mm3 in the isobrucein B group (P=0.008, t-test). These results provide strong support for STAT3 targeting in antitumor drug discovery and suggest that quassinoids may have utility in such an approach.


2013 ◽  
Vol 8 (11) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Elif Ayşe Erdogan ◽  
Ayşe Everest ◽  
Laura De Martino ◽  
Emilia Mancini ◽  
Michela Festa ◽  
...  

The chemical composition of the essential oils of two endemic plants of Turkey, Stachys rupestris Montbret et Aucher ex Benth. and Salvia heldreichiana Boiss. ex Benth., were obtained by hydrodistillation and studied by GC and GC–MS. In all, 46 compounds were identified, 22 for S. rupestris accounting for 94.6 % of the total oil and 30 for S. heldreichiana, accounting for 91.9 % of the total oil. The presence of diterpenoids (50.7%) characterized the oil from S. rupestris, while S. heldreichiana oil was rich in oxygenated sesquiterpenes (78.9%). The essential oils were evaluated for their in vitro potential cytotoxic activity on three human cancer cell lines. The oil of S. rupestris showed the higher antiproliferative activity against PC-3 and MCF-7 cancer cell lines.


Author(s):  
Burcugül Altuğ-Tasa ◽  
Betül Kaya-Çavuşoğlu ◽  
Ayşe T. Koparal ◽  
Gülhan Turan ◽  
Ali S. Koparal ◽  
...  

Background: Thiadiazole has attracted a great deal of interest as a versatile heterocycle for the discovery and development of potent anticancer agents. Thiadiazole derivatives exert potent antitumor activity against a variety of human cancer cell lines through various mechanisms. Objective: The goal of this work was to design and synthesize thiadiazole-based anticancer agents with anti-angiogenic activity. Methods: N-aryl-2-[(5-(aryl)amino-1,3,4-thiadiazol-2-yl)thio]acetamides (4a-r) were synthesized via the reaction of 5-(aryl)amino-1,3,4- thiadiazole-2(3H)-thiones with N-(aryl)-2-chloroacetamides in the presence of potassium carbonate. The compounds were investigated for their cytotoxic effects on three cancer (A549, HepG2, SH-SY5Y), two normal (HUVEC and 3T3-L1) cell lines using MTT and WST1 assays. In order to examine whether the compounds have anti-angiogenic effects or not, HUVEC were cultured on matrigel matrix to create a vascular-like tube formation. Results: Compounds 4d, 4m and 4n were more effective on A549 human lung adenocarcinoma cells than cisplatin. The IC50 values of compounds 4d, 4m and 4n for A549 cell line were found to be 7.82±0.4, 12.5±0.22, 10.1±0.52 µM, respectively when compared with cisplatin (IC50= 20±0.51 µM), whilst their IC50 values for HUVEC cell line were determined as 138.7±0.84, 78±0.44, 177.6±0.2 µM, respectively after 48 h treatment. The concentrations (10-20-50 µM) of compounds 4d, 4e, 4l, 4m, 4n, 4q and 4r were found to inhibit vascular like tube formation. Conclusion: According to their anticancer and anti-angiogenic effects, compounds 4d, 4m and 4n may be potential anticancer agents for further in vivo studies.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3944
Author(s):  
José de Jesús Manríquez-Torres ◽  
Marco Antonio Hernández-Lepe ◽  
José Román Chávez-Méndez ◽  
Susana González-Reyes ◽  
Idanya Rubí Serafín-Higuera ◽  
...  

In research on natural molecules with cytotoxic activity that can be used for the development of new anticancer agents, the cytotoxic activity of hexane, chloroform, and methanol extracts from the roots of Acacia schaffneri against colon, lung, and skin cancer cell lines was explored. The hexane extract showed the best activity with an average IC50 of 10.6 µg mL−1. From this extract, three diterpenoids, phyllocladan-16α,19-diol (1), phyllocladan-16α-ol (2), and phylloclad-16-en-3-ol (3), were isolated and characterized by their physical and spectroscopic properties. Diterpenoids 1 and 2 were tested against the same cancer cell lines, as well as their healthy counterparts, CCD841 CoN, MRC5, and VH10, respectively. Compound 1 showed moderate activity (IC50 values between 24 and 70 μg mL−1), although it showed a selective effect against cancer cell lines. Compound 2 was practically inactive. The cytotoxicity mechanism of 1 was analyzed by cell cycle, indicating that the compound induces G0/G1 cell cycle arrest. This effect might be generated by DNA alkylation damage. In addition, compound 1 decreased migration of HT29 cells.


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900
Author(s):  
Marianne Piochon-Gauthier ◽  
Jean Legault ◽  
Muriel Sylvestre ◽  
André Pichette

The chemical composition of Populus balsamifera essential oils obtained from spring buds, fall buds, and young leaves were determined by GC and GC-MS analyses. The major constituent, (+)-α-bisabolol, a rare sesquiterpene, was isolated from spring oil using reverse-phase preparative HPLC. The cytotoxic activity of balsam poplar oils and isolated (+)-α-bisabolol was assessed in vitro against human lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Essential oils were cytotoxic with IC50 ranging from 35 to 50 μg/mL. (+)-α-Bisabolol exhibited pronounced activity (IC50 14 μg/mL) against both cancer cell lines. It also exhibited interesting cytotoxic activity (IC50 23 μg/mL) against human glioma (U251), higher than the one observed for (-)-α-bisabolol (IC50 34 μg/mL), which is known for its apoptosis-inducing effect against glioma cells.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1110
Author(s):  
Salma Jlizi ◽  
Aida Lahmar ◽  
Afifa Zardi-Bergaoui ◽  
Roberta Ascrizzi ◽  
Guido Flamini ◽  
...  

The aim of the present research was to determine the chemical composition and the cytotoxic effects of Tetraclinis articulata trunk bark essential oil (HEE) obtained by steam distillation and five fractions obtained by normal phase silica chromatographic separation. Chemical analysis allowed the identification of 54 known compounds. Relatively high amounts of oxygenated sesquiterpenes (44.4–70.2%) were detected, mainly consisting of caryophyllene oxide (13.1–26.6%), carotol (9.2–21.2%),14-hydroxy-9-epi-(E)-caryophyllene (3.2–15.5%) and humulene epoxide II (2.6–7.2%). The cytotoxic activity against human mammary carcinoma cell lines (MDA-MB-231) and colorectal carcinoma cell lines (SW620) of the essential oil and its fractions were assessed. All the samples displayed moderate to weak activity compared to 5-fluorouracil. The colorectal carcinoma cell line was relatively more sensitive to the essential oil and its fractions compared to the breast cancer cell line, showing IC50 values from 25.7 to 96.5 μg/mL. In addition, the essential oil and its fraction E.2 revealed a cytotoxic activity against colorectal carcinoma cell line, with IC50 values lower than 30 μg/mL. This is the first report on the chemical composition and cytotoxic activity of the trunk bark essential oil of T. articulata.


2020 ◽  
Vol 17 (3) ◽  
pp. 216-223
Author(s):  
Jalal Nourmahammadi ◽  
Ebrahim Saeedian Moghadam ◽  
Zahra Shahsavari ◽  
Mohsen Amini

Cancer is one of the major causes of mortality all around the world. Globally, nearly 1 in 6 deaths is due to cancer. Researchers are trying to synthesize new anticancer agents. Previous studies demonstrated that some pyrazole derivatives could be considered as potential anticancer agents. Herein, ten novel derivatives of 1,5-diarylpyrazole were synthesized in four step reactions and cytotoxic activity was investigated by MTT cell viability assay. All of the compounds were characterized by 1H NMR and 13C NMR and their purity was confirmed by elemental analysis. The cytotoxicity was determined against three cancerous cell lines (HT-29, U87MG and MDA-MB 468) and AGO1522 as a normal cell line. Compound 5a showed the best cytotoxic activity on cancerous cell lines in comparison to paclitaxel. Annexin V/ PI staining assay also showed that compounds 5a and 5i would lead to significant apoptosis induction in MDA-MB 486 cell line.


2018 ◽  
Vol 16 (2) ◽  
pp. 213-219
Author(s):  
Zahra Tashrifi ◽  
Maryam Mohammadi-khanaposhtani ◽  
Mehdi Shafiee Ardestani ◽  
Maliheh Safavi ◽  
Kurosh Rad-Moghadam ◽  
...  

Background: A new series of 1,2,3-triazol-nitrostyrene derivatives was designed, synthesized, and evaluated for cytotoxic activity against Hep-2 and L929 cell lines. </P><P> Methods: The synthetic procedure started from the functionalization of 4-hydroxybenzaldehyde with propargyl bromide and a subsequent click reaction to give 1,2,3-triazole derivatives. Then, the reaction of the mentioned derivatives with nitromethane led to the formation of the title compounds in excellent yields. Results: Most of the compounds exhibited better cytotoxic activity with respect to the standard drug 5-fluorouracil. Among them, (E)-1-(3,4-dichlorobenzyl)-4-((4-(2-nitrovinyl)phenoxy)methyl)-1H- 1,2,3-triazole 6i (IC50 = 4.66 &#177; 1.3 &#181;M) against the Hep-2 cell line and (E)-1-(2,3-dichlorobenzoyl)- 4-((4-(2-nitrovinyl)phenoxy)methyl)-1H-1,2,3-triazole 6g (IC50 = 5.18 &#177; 0.8 &#181;M) against the L929 cell line exhibited the best cytotoxic effects. Conclusion: Moreover, the acridine orange/ethidium bromide double staining technique showed that the most potent compounds 6i and 6g could induce apoptosis in studied cancer cell lines.


Sign in / Sign up

Export Citation Format

Share Document