scholarly journals Cantaloupe melon ( Cucumis melo L.) conservation using hydrocooling

Revista CERES ◽  
2016 ◽  
Vol 63 (2) ◽  
pp. 191-197
Author(s):  
Edna Maria Mendes Aroucha ◽  
Jeane Medeiros Martins de Araujo ◽  
Glauber Henrique de Sousa Nunes ◽  
Maria Zuleide de Negreiros ◽  
Cristiane Alves de Paiva ◽  
...  

ABSTRACT Maintaining cantaloupe melon at field temperature impairs conservation as it speeds up cell metabolism and transpiration, and, consequently, reduces shelf life. This study aimed to evaluate the conservation of Torreon hybrid cantaloupe using the hydrocooling treatment. Fruits were harvested at the commercial maturity stage (60 days after planting), in the morning, at the Nova California Farm, municipality of Mossoró-RN, in September 2007. One set of fruit was immersed in chilled water at 5 ºC for 5 min, at the packing house, while the remaining set was not hydro cooled. Then, both sets (treated and untreated with hydrocooling) were pre-cooled in air forced tunnels at 7 ºC, until the temperature in the pulp reached 10 ºC. Both fruit sets were stored for 0, 14, 21, 28 and 35 days under modified atmosphere at 3 ± 1 oC and 90 ± 5% RH. After each storage period, the fruits were incubated in an atmosphere-controlled chamber at 20 ± 2 oC and 80 ± 5% de RH, for seven days. The following characteristics were evaluated: external and internal appearance, mass loss, soluble solids, firmness and titrable acidity. The experiment was arranged in a completely randomized split-plot design with four replications of three fruits. The plots consisted of the hydrocooling conditions (with and without fruit soaking in chilled water), and the sub-plots consisted of the storage times (0, 14, 21, 28 and 35 days).The treatment with hydrocooling was efficient in keeping the firmness and soluble solids of the fruits and shortened the pre-cooling time in the cooling tunnel. However, hydrocooling did not increase fruit shelf-life.

2018 ◽  
Vol 10 (2) ◽  
pp. 252 ◽  
Author(s):  
Edna M. M. Aroucha ◽  
Cleiniane M. G. de Sousa ◽  
José Francismar Medeiros ◽  
Glêidson B. de Góes ◽  
Iarajane B. do Nascimento ◽  
...  

The purpose this work was to evaluate the influence of pre-harvest application of plant biostimulant on the quality and shelf-life of melon. For this an experiment was established in the “Coopyfrutas”, located in Rio Grande do Norte state/Brazil. The treatments consisted of a combination of factors: melon cultivars (‘Goldex’ and ‘Iracema’) and pre-harvest application of plant biostimulant, Crop Set®, (with and without). At commercial maturity, some fruit of each treatment were sampled and analyzed and the others were stored in a cold chamber at 10±2 ºC and 80±2% relative humidity. The experiment was arranged in a completely randomized split-plot design. The plots consisted of cultivars and Crop Set® application and subplots of different storage time (0, 14, 21, 28, and 35 days after harvest) with eight replications. The characteristics evaluated were length, diameter, internal cavity, external and internal appearance, weight loss, fresh firmness, soluble solids, titratable acidity, pH, SS/TA ratio, and total soluble sugars. Applications of plant biostimulant led to an increase in fruit length and diameter. It reduced fresh firmness and increased the pH of ‘Goldex’ fruit. The total soluble sugars reduced at 35 days of storage in the ‘Iracema’ fruit treated with plant biostimulant.


2017 ◽  
Vol 4 (1) ◽  
pp. 36-47
Author(s):  
R. Osae G. Essilfie J. O. Anim

The study was conducted to assess the effect of different waxing materials on the quality attributes of tomato fruits. A 2 x8 factorial experiment layout in complete randomized design with 16 treatment combinations and 3 replication was adopted.The materials that were used for the experiment are two (2) varieties of tomatoes (Pectomech and Power Rano) and seven(7) waxing material (shea butter, cassava starch, beeswax, and a combination of shea butter + cassava starch, shea butter + beeswax, cassava starch + beeswax, shea butter + cassava starch + beeswax) and a control. Results from the experiment indicated that all waxing treatments delayed the development of weight loss, firmness, pH, total soluble solids, and total titrable acidity. The results also suggested that edible wax coatings delayed the ripening process and colour development of tomato fruits during the storage period and extended the shelf life. However Beewax treatment and its combinations performed better than the other treatments. It was therefore recommended that locally produced wax such as Beewax, Shea butter, Cassava Starch treatments and their combinations could be a good technology for preserving the quality and extending the shelf life of fresh tomato fruit as well as maintaining the physical and chemical properties.


2019 ◽  
Vol 6 (4) ◽  
pp. 36-41
Author(s):  
Elaine Gleice Silva Moreira ◽  
Scarlet Aguiar Basílio ◽  
Mariany Dalila Milan ◽  
Natália Arruda ◽  
Katiane Santiago Silva Benett

Arugula is mainly cultivated by small producers, being a leafy vegetable susceptible to water loss and wilting after harvest, which may result in changes in appearance, texture, color (yellowing), and nutritional value of the product. Hydrocooling is a cooling method that stands out for being simple, practical and efficient. Its use is to reduce the temperature and respiratory rate of vegetables after harvesting by immersion in ice or cold water, so they can be packed and stored. This study was conducted to evaluate the hydrocooling efficiency when associated with the storage period in the postharvest shelf life of arugula leaves. Arugula leaves were subjected to ten days of storage, and measurements were taken at 0, 2, 4, 6, 8 and 10 days. The experimental design was completely randomized in a 3 × 6 factorial scheme, consisting of three hydrocooling treatments [control (without cooling), and hydrocooling at 0 °C and 10 °C] and for six storage periods (0, 2, 4, 6, 8 and 10 days) with three replicates. Fresh mass loss, soluble solids, titratable acidity, pH and subjective evaluation of product appearance were measured. Hydrocooling at 0 °C proved to be the most appropriate treatment when compared to control, as reported by the values of fresh mass loss, soluble solids, and titratable acidity. Hydrocooling to 0 °C slowed leaf water loss (lower respiratory rate) and resulted in better overall leaf appearance up to the sixth day of storage, thereby increasing shelf life of arugula leaves.


2019 ◽  
Vol 57 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Yulian Tumbarski ◽  
Radosveta Nikolova ◽  
Nadezhda Petkova ◽  
Ivan Ivanov ◽  
Anna Lante

Bacteriocins are a large group of antimicrobial compounds that are synthesized by representatives of the genus Bacillus and lactic acid bacteria. They are used extensively in the food industry as biopreservatives. Incorporated in the composition of edible coatings, bacteriocins can reduce microbial growth and decay incidence in perishable fruits, thus improving product shelf-life and commercial appearance. The present study aims to investigate the effect of edible coatings of 0.5 % carboxymethyl cellulose (CMC) enriched with a purified bacteriocin from Bacillus methylotrophicus BM47 on the shelf-life extension of fresh strawberries. During storage at 4 °C and 75 % relative humidity for 16 days, the measurements of mass loss, decay percentage, total soluble solids (TSS), titratable acidity (TA), pH, organic acids, total phenolic and anthocyanin contents and antioxidant activity were made. The results demonstrate that the application of edible coatings with 0.5 % CMC and 0.5 % CMC with bacteriocin (CMC+B) led to a significant decrease of mass loss in the treated strawberries compared to the uncoated fruit. After the 8th day of storage, significant reductions in decay percentage along with the absence of fungal growth in CMC+B-coated fruit were observed in comparison with the CMC-coated and control strawberries. During the second half of the storage period, CMC and CMC+B treatments reduced TSS amount in the coated fruit compared to the control, but did not affect the increase of TA and decrease of pH values that are normally associated with postharvest changes. The CMC and CMC+B coatings did not prevent the decrease of ascorbic acid, and total phenolic and anthocyanin contents during cold storage. The application of CMC and CMC+B coatings had a significant inhibitory effect on decreasing the antioxidant activity throughout the storage period and maintained the antioxidant levels in both treatments close to the initial value of 76.8 mmol Trolox equivalents per 100 g of fresh mass.


2016 ◽  
Vol 13 (1) ◽  
pp. 131-136 ◽  
Author(s):  
MR Sharmin ◽  
MN Islam ◽  
MA Alim

In this experiment the effects of aloe vera gel coating on storage behavior of papaya at room temperature (290C-310C) was studied. Physico-chemical parameters such as color, physical changes, moisture, ash, acidity, vitamin C, protein, fat and total soluble solids (TSS) of papaya and aloe vera was determined at 3 days interval during the storage period. Among the physico-chemical parameters, color, physical changes, total weight loss and TSS contents increased significantly, whereas moisture content, vitamin C and titrable acidity decreased during storage. Control and 0.5% aloe vera treated papaya decayed from 6 days onward and completely decayed within 12 days of storage. On the other hand, 1% and 1.5% aloe vera gel coated papaya maintained their shelf-life for 9 and 12 days, respectively. Some of 1.5% aloe vera coated papaya decayed after 15 days. Papaya treated with 1.5% aloe vera solution, maintained their color & physical changes compared to other treatments up to 12 days of storage. The overall results showed the superiority of 1.5% aloe vera gel coating in extending the shelf-life of papaya upto 15 days compared to that of 0.5%, 1% aloe vera gel coating and control papaya. The present study describes the preparation and potential application of aloe vera gel coatings for enhancing the postharvest life and quality of papaya.J. Bangladesh Agril. Univ. 13(1): 131-136, June 2015


Author(s):  
Suchismita Jena ◽  
Ramesh K. Goyal ◽  
Anil K. Godhara ◽  
Abhilash Mishra

Aims:  To evaluate the potentiality of bio-extract coatings for achieving extended shelf life with enhance fruit quality attributes in pomegranate under ambient storage condition.  Study Design:  The lab experiment conducted in complete randomized design with three repetitions on Mridula cultivar of pomegranate.     Place and Duration of Study:  The experiment was conducted during September 2016 at department of fruit science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India. Methodology: Pomegranate freshly harvested fruits were coated with three bio-extracts coatings viz. Aloe vera (50,75 and 100%), ginger (1,2 and 3%) and mints (10,20 and 30%). The coated fruits were stored at ambient room condition in corrugated fiber board boxes for twelve days.  Periodically effects of bio-extract coatings, storage period and their interaction were observed for physiological loss in weight, decay loss, juice content, TSS: acid ratio, ascorbic acid content and anthocyanin content.    Results: Surface coating with Aloe vera extract 100% was found most effective in reducing physiological loss in weight (50% less reduction as compared to untreated control) whereas ginger extract 3% in reducing the decay loss of fruits (9.65%) as compared to untreated control (23.36%). Among various treatments, the coating of pomegranate fruits with Aloe vera extract 100% resulted in lowest total soluble solids to acid ratio (32.17%) and significantly highest content of juice (47.17%), anthocyanin (13.98 mg/100 g) and ascorbic acid (12.82 mg/100 g) of the fruits along with highest organoleptic rating. The quality attributes viz. total soluble solids to acid ratio, anthocyanin of fruits increased with progression of storage period, while juice content and ascorbic acid decreased. Conclusion: Bio-extract coating of Aloe vera (100%) substantially improved the shelf life with retaining better fruit quality attributes under ambient conditions and has the potential to substitute the prevalent chemical coatings for pomegranate.  


2012 ◽  
Vol 200 ◽  
pp. 305-311
Author(s):  
Dong Li Li ◽  
Wen Cai Xu ◽  
Zun Zhong Liu ◽  
Ya Bo Fu ◽  
Ya Jun Wang

An active packaging film (APF1) with releasing low concentration sulfur dioxide (SO2) was tested on quality of ‘vitis labruscana kyoho’ table grape. All samples were stored at 5°C and during the storage period the main quality parameters, weight loss, berries shatter, decay, firmness, total soluble solids content (TSS), total acid (TA, using the PH of grape juice instead of the TA ), Vitamin c (Vc) content were monitored and compared with the control sample unpacked in any film. Results demonstrated that APF1 could reduce water loss of table grapes, prevent it from pathogens infection. The results also showed that APF1 could greatly guarantee a long shelf life for grape. After storage 56 days (storage at 0~5°C), the water loss, berry firmness, TA and Vc content in grapes packaged in APF1 were slowly reduced, TSS was slight increased, percentage of shatter and decayed berries of grapes were 22% and 27%, respectively. The percentage of berries decay of grapes packaged in APF1 was reduced to 5% from 21% for control batches on 11th days. All unpackaged table grapes (control batches) were decayed after 28 days. APF1 would help to preserve quality and extend shelf life of table grapes.


2019 ◽  
Vol 6 (1) ◽  
pp. 41-54
Author(s):  
Md. Belal Hossain Sikder ◽  
M Muksitu Islam

Banana is highly perishable fruit and shelf life is short, which leads resulting post-harvest loss consistently in Bangladesh. To lessen the post-harvest loss and draw out the time span of the usability of banana, green mature bananas were treated with 0.5%, 0.75%, and 1% chitosan, individually. For the subsequent treatments, bananas were stored at room temperature. The viability of the coating in extending fruit’s shelf-life was assessed by evaluated total weight loss, ash content, total soluble solids (TSS), pH, titratable acidity (TA), disease severity and shelf life during the storage period. Chitosan coating reduced respiration activity, thus delaying ripening and the rate of decay due to senescence. The chitosan-coated banana samples had a better outcome on weight loss, ash content, pH, TSS, TA and disease severity values as compared to control samples. Banana coated with 1% chitosan showed less weight reduction and lessened obscuring than different treatments and control. Disease severity was astoundingly lessened by chitosan covering application. Chitosan coating extended banana up to the shelf life of more 2 to 4 days. From this investigation, it demonstrated that 1% chitosan was more appropriate in extending the shelf-life and better quality of banana during ripening and storage at ambient temperature.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1062-1065 ◽  
Author(s):  
John M. DeLong ◽  
Robert K. Prange ◽  
Peter A. Harrison

`Redcort Cortland' and `Redmax' and `Summerland McIntosh' apples (Malus ×domestica Borkh.) were treated with 900 nL·L-1 of 1-methylcyclopropene (1-MCP) for 24 hours at 20 °C before storage and were kept at 3 °C in either a controlled atmosphere (CA) of 2 kPa O2 and <2.5 kPa CO2 or in an air (RA) environment for up to 9 months. After 4.5 months, half of the fruit were treated with a second 900 nL·L-1 1-MCP application in air at 3 °C for 24 hours and then returned to RA or CA storage. At harvest and following removal at 3, 6, and 9 months and a 7-day shelf life at 20 °C, fruit firmness, titratable acidity (TA) and soluble solids content (SSC) were measured, while internal ethylene concentrations (IEC) in the apple core were quantified after 1 day at 20 °C. Upon storage removal and following a 21-day shelf life at 20 °C, disorder incidence was evaluated. 1-MCP-treated apples, particularly those held in CA-storage, were more firm and had lower IEC than untreated fruit. Higher TA levels were maintained with 1-MCP in all three strains from both storages, while SSC was not affected. Following the 6- and/or 9-month removals, 1-MCP suppressed superficial scald development in all strains and reduced core browning and senescent breakdown in RA-stored `Redmax' and `Summerland' and senescent breakdown in RA-stored `Redcort'. 1-MCP generally maintained the quality of `Cortland' and `McIntosh' fruit held in CA and RA environments (particularly the former) to a higher degree than untreated apples over the 9-month storage period. A second midstorage application of 1-MCP at 3 °C did not improve poststorage fruit quality above a single, prestorage treatment.


Author(s):  
Tadesse Teferra ◽  
Abadi Mezgebe ◽  
Eden Lencha

This research was conducted to understand changes of physicochemical properties of fruits of three apple cultivars as influenced by stage of maturity and packaging types over storage period of three weeks. The research was designed to replicate practices by the producers and along the value chains and to assess the fruit quality under the conditions of the major markets in the region. All the measured physicochemical parameters significantly varied with the cultivars, maturity stage at harvest and packaging types. Higher firmness was recorded for the samples harvested about two weeks before the optimal maturity, usually practiced by significant number of producers to gain market advantage. Lower total soluble solids corresponded to the early harvested samples regardless of cultivars and packaging types. The firmness was observed decreasing over the storage periods whereas the total soluble solids increased, which is associated to improving sensorial quality for the early harvested cultivars as the soluble solids are mainly sugars. The early harvesting resulted in fruits of inferior desirability including extreme hardness, firmness and low total soluble solids that may have high sourness and less sweet taste. Awareness creation for the producers on the quality and advantages of harvesting their produces at optimal maturity and practicing good postharvest management is required.


Sign in / Sign up

Export Citation Format

Share Document