scholarly journals Regulators, culture media and types of lights in vitro lavender culture

2019 ◽  
Vol 49 (11) ◽  
Author(s):  
Rayssa Camargo de Oliveira ◽  
Simone Abreu Asmar ◽  
Herick Fernando de Jesus Silva ◽  
Tâmara Prado de Morais ◽  
José Magno Queiroz Luz

ABSTRACT: Lavender is an aromatic ornamental plant that is used widely in the perfume, pharmaceutical, cosmetical and food industries. That is why it is important to study ways to promote a production of lavender raw material. For this, four experiments were carried out in order to study the germination and initial in vitro development of lavender. In the first part the efficiency of the use of hydrogen peroxide in the pre-treatment of seeds inoculated in culture media with different concentrations of gibberellic acid was evaluated. Besides that, the influence of the use of Growlux lamps and white fluorescent lamps on plantlets cultivated in MS and LS media at salts concentrations of 50 and 100% was evaluated. Finally, the effect of the gibberellic acid, putrescine, spermine and spermidine in different concentrations was evaluated. Better results were estimated when hydrogen peroxide pretreatment was applied to the seeds with subsequent inoculation in a medium containing 2,5 mg L-1 of gibberellic acid. The use of Growlux lamps did not influence the characteristics observed when compared to the use of white fluorescent lamps, however it was concluded that the species develops more in a LS medium. Concerning the use of polyamines was found that germination, aerial part and number of leaves of the seedlings were generally favored at the concentration of 0,5 mg L-1 except when spermine was applied, which resulted in a lower number of leaves under this condition.

2015 ◽  
Vol 46 (4) ◽  
pp. 590-592 ◽  
Author(s):  
Cibele Mantovani ◽  
Kathia Fernandes Lopes Pivetta

ABSTRACT: The objective of this paper was to evaluate the effects of different honey concentrations in culture media, in comparison to sucrose medium, for the in vitro development of the epiphytic Encyclea cordigera orchid, in order to improve the process of propagation of the species. The in vitro germination was prepared on a reduced Murashige & Skoog (MS) medium. After 90 days, the seedlings were divided into different treatments, where they remained for another 90 days. Six treatments were set up (30g L-1 of sucrose; 15, 30, 45, and 60g L-1 of honey; and absence of any carbohydrates) in a completely randomized design. Plants were removed from the vials 270 days after the start of the experiment, and the number of roots, length of the largest leaf, length of the longest root, number of leaves, and fresh and dry masses were evaluated. Data concerning the number of leaves and roots were (x+1)1/2 transformed and subjected to an analysis of variance (ANOVA); the means were compared by a Tukey's test set at 5% probability. Medium containing 60g L-1 of honey proved to be superior to the sucrose medium traditionally used, favoring the in vitro growth and development of Encyclea cordigera. This medium can therefore be recommended for the propagation of this species, which is usually cultivated as an ornamental plant.


Nativa ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Marcos Vinícius Marques Pinheiro ◽  
Ana Cristina Portugal Pinto De Carvalho ◽  
Fabrina Bolzan Martins

No intuito de elevar as taxas de sobrevivência durante a etapa de aclimatização e posterior plantio a campo, avaliou-se o enraizamento in vitro de bananeira cv. Pacovan, em diferentes concentrações de sais MS e de sacarose. Utilizou-se DIC, esquema fatorial (6x2x3), com seis meios de cultura [sendo três concentrações de nutrientes do meio MS (100%; 50% de macronutrientes; e 50% dos sais macro e micronutrientes), e duas concentrações de sacarose (1,5/3,0%)], dois fotoperíodos (12/16 h) e três tempos de cultivo (21, 28 ou 35 dias) e seis repetições/tratamento. Analisaram-se: altura da planta, número de folhas/planta, massas frescas e secas das partes aérea e radicular. Para altura da planta, massa fresca da parte aérea e radicular, o meio MS 50% dos sais + sacarose (1,5%) com fotoperíodo de 16 h e tempo de cultivo de 35 dias foi satisfatório. Para massa seca da parte aérea foi MS 50% de sais + sacarose (3%), e para massa seca da parte radicular, MS 100% + sacarose (3%) (em 12hs/28 dias e 16hs/21 dias). Para o alongamento/enraizamento in vitro da bananeira cv. Pacovan sugere-se MS 50% de sais (macro e micronutrientes), redução ou manutenção de sacarose (1,5 ou 3%) em 16h/35 dias de cultivo.Palavra-chave: Musa spp., propagação in vitro, sistema radicular. CHANGES IN CULTURE MEDIUM, PHOTOPERIOD AND TIME OF CULTIVATION AFFECT THE IN VITRO ELONGATION AND ROOTING OF BANANA CV. PACOVAN ABSTRACT:In order to achieve high rates of survival during the acclimatization and later planting in the field, was evaluated the in vitro of banana cv. Pacovan plants under different concentrations of sucrose and MS basal salt mixture. The experiment was assembled in a DIC, in 6x2x3, six different culture media [three different MS salt mixture concentrations (100%; 50% of macronutrients; and 50% of macro/micronutrients) and two sucrose concentrations (1.5/3%)], two photoperiods (12/16 hours) and three cultivation times (21, 28 or 35 days). Each treatment was composed by 6 replicates. Plant height, number of leaves/plant, fresh and dry weight of roots and shoots, were analyzed. Satisfactory results for plant height and shoot and root fresh biomass were observed in MS with macro/micronutrients (50%) + sucrose (3%), 16 hours/35 days. The highest values of shoot dry weight were observed in MS with macro/micronutrients (50%) + sucrose (3%); the highest root dry weight was achieved with MS 100% + sucrose (3%) (12hs/28 and 16hs/21 days). The suggested medium for the in vitro elongation and rooting stage of banana cv. Pacovan is the MS with 50% of salts (macro and micronutrients), reduction or maintenance of sucrose (1.5 or 3%) in 16h/35 days of cultivation.Keywords: Musa spp., in vitro propagation, root system. DOI:


2018 ◽  
Vol 8 (2) ◽  
pp. 389-395
Author(s):  
Luciane De Siqueira Mendes ◽  
Marcia Eugenia Amaral Carvalho ◽  
Willian Rodrigues Macedo ◽  
Paulo Roberto de Camargo e Castro

The use of plant growth regulators is directly related to the success of in vitro propagation, which is an advantageous alternative to obtain seedlings on a commercial scale. This study aimed to evaluate the in vitro development of ‘IAC 95-5000’ sugarcane seedlings after the addition of different doses of ethephon (0, 25, 50, 100 and 200 mg L-1) or gibberellic acid (0, 2.5, 5.0, 7.5 and 10.0 mg L-1) to the culture medium. Ethephon increased the number of tillers (up to 231.70%), reduced height of the main tiller (44.66 to 60.47%), and did not affect the shoot´s fresh and dry mass. On the other hand, gibberellin decreased the number of tillers and negatively changed biomass partitioning. It is concluded that the use of ethephon is a potential strategy to enhance in vitro production of ‘IAC 95-5000’ sugarcane seedlings, since it increased the number of usable shoots in subsequent subcultures, and its effects on height reduction can be reversible. However, the use of the tested doses of gibberellic acid is not recommended, because it impaired seedling development of this sugarcane variety.


2021 ◽  
Vol 22 (1) ◽  
pp. 17-30
Author(s):  
Nataliya Dimitrova ◽  
Lilyana Nacheva ◽  
Małgorzata Berova ◽  
Danuta Kulpa

In vitro micropropagation of plants is highly useful for obtaining large quantities of planting material with valuable economic qualities. However, plantlets grow in vitro in a specific environment and the adaptation after the transfer to ex vitro conditions is difficult. Therefore, the acclimatization is a key step, which mostly determines the success of micropropagation. The aim of this investigation was to study the effect of the biofertlizer Lumbrical on ex vitro acclimatization of micropropagated pear rootstock OHF 333 (Pyrus communis L.). Micropropagated and rooted plantlets were potted in peat and perlite (2:1) mixture with or without Lumbrical. They were grown in a growth chamber at a temperature of 22±2 °C and photoperiod of 16/8 hours supplied by cool-white fluorescent lamps (150 µmol m-2 s-1 Photosynthetic Photon Flux Density, PPFD). The plants were covered with transparent foil to maintain the high humidity, and ten days later, the humidity was gradually decreased. Biometric parameters, anatomic-morphological analyses, net photosynthetic rate and chlorophyll a fluorescence (JIP test) were measured 21 days after transplanting the plants to ex vitro conditions. The obtained results showed that the plants, acclimatized ex vitro in the substrate with Lumbrical, presented better growth (stem length, number of leaves, leaf area and fresh mass) and photosynthetic characteristics as compared to the control plants. This biostimulator could also be used to improve acclimatization in other woody species


2004 ◽  
Vol 16 (2) ◽  
pp. 202 ◽  
Author(s):  
W.F. Swanson ◽  
A.L. Manharth ◽  
J.B. Bond ◽  
H.L. Bateman ◽  
R.L. Krisher ◽  
...  

Domestic cat embryos typically are cultured in media formulated for somatic cells or embryos from rodents or livestock species. Under these conditions, blastocyst development has been inconsistent and delayed relative to embryos grown in vivo, and embryo viability following transfer has been low. Our goal is to systematically define the culture requirements of the feline embryo to improve embryo development and viability. The objective of this study was to determine the ionic (NaCl, KCl, KH2PO4, and CaCl2:MgSO4) preferences of domestic cat IVF embryos. Anestral female cats were injected (i.m.) with 150IU eCG followed 84h later by 100IUhCG. Oocytes were recovered via laparoscopic follicular aspiration approximately 24h post-hCG injection (Day 0). Semen was collected from one of two males by means of an artificial vagina and washed once in HEPES-buffered IVF medium. Mature cumulus-oocyte complexes were co-incubated with 2.5–5×105 motile sperm mL−1 in IVF medium (100mM NaCl, 4.0mM KCl, 1.0mM KH2 PO4, 2.0mM CaCl2, 1.0mM MgSO4-7H2O, 25.0mM NaHCO3, 3.0mM glucose, 0.1mM pyruvate, 6.0mM L-lactate, 1.0mM glutamine, 0.1mM taurine, 1×MEM nonessential amino acids, 50μgmL−1 gentamicin, and 4.0mgmL−1 BSA) for 19 to 22h in 6% CO2 in air (38.7°C). Cumulus cells were removed and embryos cultured (8–11 embryos/50μL drop; 6% CO2, 5% O2, 89% N2, 38.7°C) in media containing 100.0 or 120.0mM NaCl, 4.0 or 8.0mM KCl, 0.25 or 1.0mM KH2PO4, and 1.0mM:2.0mM or 2.0mM:1.0mM CaCl2:MgSO4 (2×2×2×2 factorial design). The remaining components of the culture medium were identical to the IVF medium (but w/o gentamicin). Development to the blastocyst stage by Day 6, metabolism (glycolysis and pyruvate) of each blastocyst, and final cell number (Hoechst 33342 staining) of all embryos were evaluated. Final cell number of cleaved embryos and development to the blastocyst stage were analyzed using analysis of variance in the GLIMMIX macro of SAS. A total of 236 oocytes were inseminated, yielding 128 cleaved embryos (54%), including 6 blastocysts (4.7% of cleaved embryos). Cell number was not (P>0.05) affected by NaCl, KCl, or KH2PO4 concentrations, but tended (P=0.057) to be higher after culture in 2.0mM:1.0mM CaCl2:MgSO4. Treatments did not significantly affect (P>0.05) development to the blastocyst stage, but numerically more blastocysts were produced in 100.0mM NaCl (4/6), 8.0mM KCl (5/6), or 1.0mM KH2PO4 (5/6). Both CaCl2:MgSO4 ratios resulted in 3 blastocysts. Blastocysts contained 61.08±5.1 (mean±SEM, n=6) cells and actively metabolized glucose (glycolysis, 3.7±0.8pmol/embryo/3h or 0.06±0.01pmol/cell/3h) and pyruvate (0.75±0.27pmol/embryo/3h or 0.013±0.005pmol/cell/3h). These results suggest that the ionic composition of culture media influences the in vitro development of cat IVF embryos. (Supported by NIH grant RR15388.)


Author(s):  
Mustafa Numan BUCAK ◽  
Muharrem SATILMIŞ ◽  
Sedat Hamdi KIZIL ◽  
Tahir KARAŞAHİN ◽  
Numan AKYOL

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3833 ◽  
Author(s):  
Arianna Marucco ◽  
Elisabetta Aldieri ◽  
Riccardo Leinardi ◽  
Enrico Bergamaschi ◽  
Chiara Riganti ◽  
...  

The dispersion protocol used to administer nanomaterials (NMs) in in vitro cellular tests might affect their toxicity. For this reason, several dispersion procedures have been proposed to harmonize the toxicological methods, allowing for the comparison of the data that were obtained by different laboratories. At the same time, several techniques and methods are available to monitor the identity of the NMs in the cell media. However, while the characterization of suspensions of engineered NMs having narrow size distribution may be easily performed, the description of aggregated NMs forming polydispersions is still challenging. In the present study, sub-micrometric/nanometric TiO2, SiO2, and CeO2 were dispersed in cell media by using two different dispersion protocols, with and without albumin (0.5%) and with different sonication procedures. Dynamic Light Scattering (DLS) was used to characterize NMs in stock solutions and culture media. Pitfalls that affect DLS measurements were identified and, guidance on a critical analysis of the results provided. The NMs were then tested for their cytotoxicity (LDH leakage) toward murine macrophages (RAW 264.7) and PMA-activated human monocytes (THP-1). As markers of pro-inflammatory response, nitric oxide (NO) and cytokine IL-1β production were measured on RAW 264.7 and THP-1 cells, respectively. The pre-treatment with albumin added to a strong sonication treatment increases the stability and homogeneity of the suspensions of nanometric samples, but not of the submicrometric-samples. Nevertheless, while TiO2 and CeO2 were non-cytotoxic in any conditions, differences in cytotoxicity, NO, and IL-1β releases were found for the SiO2, depending upon the protocol. Overall, the results suggest that there is no one-fits-all method valid for all NMs, since each class of NMs respond differently. The definition of validated procedures and parameters for the selection of the most appropriate method of dispersion for each class of NM appears to be a more efficacious strategy for the harmonization of the dispersion protocols.


Zygote ◽  
2019 ◽  
Vol 27 (3) ◽  
pp. 118-125 ◽  
Author(s):  
Wei Peng ◽  
Mengtong Lei ◽  
Jun Zhang ◽  
Yong Zhang

SummaryMelatonin plays a critical role in several types of cells as an antioxidant to protect intracellular molecules from oxidative stress. The anti-oxidation effect of melatonin in yak embryos is largely unknown. We report that melatonin can protect the development of yak preimplantation embryos against oxidative stress induced by hydrogen peroxide (H2O2). Therefore, the quality of blastocysts developed from zygotes exposed to H2O2 was promoted. In addition, we observed that melatonin reduced H2O2-induced intracellular reactive oxygen species (ROS) levels and prevented mitochondrial dysfunction in zygotes. These phenomena revealed the effective antioxidant activity of melatonin to prevent oxidative stress in yak embryos. To determine the underlying mechanism, we further demonstrated that melatonin protected preimplantation embryos from oxidative damage by preserving antioxidative enzymes. Collectively, these results confirmed the anti-oxidation effect of melatonin in yak embryos that significantly improved the quantity and quality of blastocysts in the in vitro production of embryos in yaks.


Author(s):  
José Tonatiuh Gutiérrez Zavala ◽  
Irebe Ávila Díaz ◽  
Rosa Elia Magaña Lemus

Background and Aims: Orchids in Mexico are mainly threatened by deforestation, changes in land use, illegal trade, deficiencies in environmental policy and legislation, and a lack of community participation in the conservation of their forests. Erycina hyalinobulbon is an endemic twig epiphyte orchid with a short life cycle and with large flowers in relation to its size, for which it has been harvested from its wild populations. The objectives of this work were to evaluate the in vitro development of E. hyalinobulbon in culture media with organic supplements, to compare sucrose vs. N’Joy Stevia® as a carbon source for its initial stages of development, and to evaluate the development of its seedlings in media enriched with plant growth regulators (PGR).Methods: For the sowing of seeds, PhytamaxTM and MS medium at 30% of its basal salts were used in combination with organic supplement (coconut milk, pineapple puree and banana puree), along with the Phy medium used as control. In order to measure the effect of sucrose vs. N´Joy Stevia® as a carbon source, these two treatments were used, with the PhytamaxTM medium. To evaluate the development of seedlings with PGR, three treatments were tested: the 100% PhytamaxTM control, 30% PhytamaxTM with 1.166 ml/l of Maxi-grow and the medium Chiu.Key results: PhytamaxTM medium added with banana promoted germination by 9.3%, being a low cost and easy production option. Ninety days after sowing, N´Joy Stevia® as a carbon source promoted germination by 8%. The best development of the seedlings was registered in the medium PhytamaxTM without PGR.Conclusions: With this study, it was possible to develop an accessible in vitro propagation system for E. hyalinobulbon, in order to sustainably manage it and favor its conservation.


Sign in / Sign up

Export Citation Format

Share Document