scholarly journals Blanching of papaya: effect on osmotic dehydration and characterization of the fruit invertase

2021 ◽  
Vol 51 (9) ◽  
Author(s):  
Carolina Castilho Garcia ◽  
Fabio Shindi Uchidate ◽  
Keila de Souza Silva ◽  
Luiz Gustavo Covizzi ◽  
Maria Aparecida Mauro

ABSTRACT: This research evaluated the influence of blanching on osmotic dehydration in sucrose solutions of papaya of Formosa cultivar. The characterization of invertase present in the fruits was also done. Blanching possibly caused damages to the cellular structure resulting in higher water loss, sugar gain and, thus, effective diffusion coefficients than fresh papayas during osmotic dehydration. The invertase extracted from papaya pulp presented optimum temperature of 45 °C and optimum pH of 4.8. Considering the low production cost of papaya and the invertase characteristics, the fruit shows to be a potential source for the referred enzyme extraction.

2009 ◽  
Vol 15 (6) ◽  
pp. 545-552 ◽  
Author(s):  
Erzheng Su ◽  
Tao Xia ◽  
Liping Gao ◽  
Qianying Dai ◽  
Zhengzhu Zhang

Tannase was effectively immobilized on alginate by the method of crosslinking-entrapment-crosslinking with a high activity recovery of 76.6%. The properties of immobilized tannase were investigated. Its optimum temperature was determined to be 35 ° C, decreasing 10 °C compared with that of free enzyme, whereas the optimum pH of 5.0 did not change. The thermal and pH stabilities of immobilized tannase increased to some degree. The kinetic parameter, Km, for immobilized tannase was estimated to be 11.6 × 10-4 mol/L. Fe2+ and Mn2+ could activate the activity of immobilized tannase. The immobilized tannase was also applied to treat the tea beverage to investigate its haze-removing effect. The content of non-estern catechins in green tea, black tea and oolong tea increased by 52.17%, 12.94% and 8.83%, respectively. The content of estern catechins in green tea, oolong tea and black tea decreased by 20.0%, 16.68% and 5.04%, respectively. The anti-sediment effect of green tea infusion treated with immobilized tannase was significantly increased. The storage stability and reusability of the immobilized tannase were improved greatly, with 72.5% activity retention after stored for 42 days and 86.9% residual activity after repeatedly used for 30 times.


1999 ◽  
Vol 181 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Hisayo Ono ◽  
Kazuhisa Sawada ◽  
Nonpanga Khunajakr ◽  
Tao Tao ◽  
Mihoko Yamamoto ◽  
...  

ABSTRACT 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic β-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with l-glutamate. This enzyme required pyridoxal 5′-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25°C and had Km s of 9.1 mM forl-glutamate and 4.5 mM for dl-ASA. DABA acetyltransferase catalyzed acetylation of DABA to γ-N-acetyl-α,γ-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20°C in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15°C in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0.77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30°C.


2008 ◽  
Vol 273-276 ◽  
pp. 138-143 ◽  
Author(s):  
Luis Mayor ◽  
João M.P.Q. Delgado ◽  
M. Vázquez da Silva ◽  
Alberto M. Sereno ◽  
Maria P. Gonçalves

Osmotic dehydration of pumpkin (Cucurbita pepo, L.) fruits was carried out with binary solutions of sucrose and NaCl at different temperatures and solute concentrations. Water loss and solids gain kinetics were experimentally determined and fitted using a diffusional model. Pumpkins samples were considered as finite cylinders and the analytical solution of the unsteady diffusion equation was used considering the external resistance to the mass transfer negligible. The influence of shrinkage and temperature on the effective diffusion coefficients was also assessed in this work.


1991 ◽  
Vol 279 (1) ◽  
pp. 67-73 ◽  
Author(s):  
U Fauth ◽  
M P M Romaniec ◽  
T Kobayashi ◽  
A L Demain

The extracellular cellulolytic enzymes of the thermophilic anaerobe Clostridium thermocellum occur as a protein complex or aggregate known as the cellulosome. By using a combination of ion-exchange, adsorption and hydrophobic-interaction chromatography, it was possible to isolate from extracellular broth a specific endoglucanase of interest without the use of denaturants. The endoglucanase was identified as the cellulosomal subunit Ss by the use of specific antibodies. The enzyme has an Mr of 83,000, an isoelectric point of 3.55, optimum pH of 6.6 and optimum temperature of 70 degrees C. It hydrolyses CM-cellulose and, at a higher rate, the cellodextrins, cellotetraose and cellopentaose, but does not hydrolyse a crystalline cellulose such as Avicel. Cellobiose and cellotriose are also immune to attack. It differs from endoglucanases previously isolated by others and a 76,000-Mr endoglucanase recently isolated in this laboratory.


1969 ◽  
Vol 46 (2) ◽  
pp. 120-126
Author(s):  
Betty G. García

The crude-protein fraction of green plantains was isolated and found to cause an inversion of sucrose solutions. The rate of inversion of sucrose by the invertase of the green plantain is proportional to the concentration of enzyme. The inversion of sucrose, when catalyzed by green-plantain invertase, appears to follow a first-order reaction rate at low substrate concentrations (below 6 percent). As the concentration of sucrose exceeds 6 percent the rate of the reaction changes to zero order. An optimum pH of 4.15 and an optimum temperature of 44.4° C. were obtained for the activity of green-plantain invertase.


Author(s):  
María M. Rodríguez ◽  
Javier R. Arballo ◽  
Laura A. Campañone ◽  
Rodolfo H. Mascheroni

AbstractThe objective of this work was to analyze the relevant process conditions on osmotic dehydration of plums and to determine the diffusion coefficients related to this process. The influence of solution (type and concentration of solute, temperature, fruit/solution ratio) and process time on water loss, water content and solutes gain were studied. Process analysis was performed experimentally by means of a set of 16 duplicate tests and numerically by mathematical modeling of the unsteady-state mass transfer phenomena. Experiments were carried out with glucose and sorbitol solutions (40–60 % w/w), dehydrating plum pieces during 2 h at temperatures of 25 and 40ºC, with fruit/solution ratios of 1/4 and 1/10. For calculating effective diffusion coefficients, a novelty inverse-method was applied, the approximate shape of food-pieces was considered using Finite Elements Method. Calculated diffusion coefficients ranged from 1.13 × 10−09to 4.71 × 10−09m2s−1and 0.44 × 10−09to 3.46 × 10−09m2s−1, for water and solutes, respectively.


2018 ◽  
Vol 26 (2) ◽  
pp. 307-328 ◽  
Author(s):  
Hesna Nursevin Öztop ◽  
Fatma Banu Çatmaz ◽  
Dursun Saraydin

Abstract Poly (methacrylamide / maleic acid) PM/MA and poly (methacrylamide) PM hydrogels were prepared aiming to be used as a support for invertase. Spectrophotometric, thermal analysis methods, swelling and diffusion experiments were used for the characterization of hydrogels. The swelling of PM/MA was higher than that of PM in water. The diffusion of water within the hydrogel was found to be non-Fickian. Invertase was immobilized onto PM and PM/MA (samples named PM-I and PM/MA-I respectively). The optimum pH values were found to be; 6.0, 5.0 and 5.5 for free invertase, PM-I and PM/MA-I respectively. The optimum temperature values were found to be 30 °C, 35 °C and 40 °C for free invertase, PM-I and PM/MA-I respectively. The Michaelis constant (Km) and maximum velocity of the enzymes (Vmax) were Km: 11,75 mM, Vmax: 1,95 μmol min−1 for free invertase, Km: 67,24 mM, Vmax: 60,6 μmol min−1 for PM-I and Km: 74,55 mM, Vmax: 18,12 μmol min−1 for PM/MA-I. PM/MA-I showed excellent thermal, operational and storage stability.


2018 ◽  
Vol 23 (1) ◽  
pp. 14 ◽  
Author(s):  
Putri Dwi Mulyani ◽  
Radhiyah Mardhiyah Hamid ◽  
Rifqi Zahroh Janatunaim ◽  
Yekti Asih Purwestri

BSR 2, BSR 3, BSR 8, and BSR 9, different bacteria isolated from the termite gut, have been shown to possess cellulolytic activities, but their amylolytic ability has heretofore been unknown. This study attempted to fill in this knowledge gap. The formation of a clear zone using the iodine test showed that the bacteria were able to produce and secrete amylase. Based on the results, the best cultivation times for strains BSR 2, BSR 3, BSR 8, and BSR 9 were 6, 3, 2, and 2 d, respectively, yielding amylase activities of 2.59 ± 0.13 U/mg, 2.00 ± 0.08 U/mg, 1.67 ± 0.10 U/mg, and 1.55 ± 0.12 U/mg, respectively. BSR 2 had the highest amylase activity compared with the other bacterial isolates. The optimum ph for bacterial amylase activity of BSR 2 was 7.0, and the optimum temperature was 40°C. The molecular characterization of isolates BSR 2, BSR 3, BSR 8, and BSR 9 was based on 16S rRNA gene sequences. Isolates BSR 8 and BSR 9 were thus identified as Brevibacillus parabrevis and Brevibacillus sp. With similarities amounting to 92.48% and 95.91%, while the BSR 3 isolate was identified as Pseudomonas alcaligenes with a similarity of 94.29%, and the BSR 2 isolate could not be identified yet.


Sign in / Sign up

Export Citation Format

Share Document