scholarly journals Physiological, cellular and molecular aspects of the desiccation tolerance in Anadenanthera colubrina seeds during germination

2017 ◽  
Vol 77 (4) ◽  
pp. 774-780 ◽  
Author(s):  
L. E. Castro ◽  
C. C. Guimarães ◽  
J. M. R. Faria

Abstract During germination, orthodox seeds become gradually intolerant to desiccation, and for this reason, they are a good model for recalcitrance studies. In the present work, physiological, biochemical, and ultrastructural aspects of the desiccation tolerance were characterized during the germination process of Anadenanthera colubrina seeds. The seeds were imbibed during zero (control), 2, 8, 12 (no germinated seeds), and 18 hours (germinated seeds with 1 mm protruded radicle); then they were dried for 72 hours, rehydrated and evaluated for survivorship. Along the imbibition, cytometric and ultrastructural analysis were performed, besides the extraction of the heat-stable proteins. Posteriorly to imbibition and drying, the evaluation of ultrastructural damages was performed. Desiccation tolerance was fully lost after root protrusion. There was no increase in 4C DNA content after the loss of desiccation tolerance. Ultrastructural characteristics of cells from 1mm roots resembled those found in the recalcitrant seeds, in both hydrated and dehydrated states. The loss of desiccation tolerance coincided with the reduction of heat-stable proteins.

2016 ◽  
Vol 38 (3) ◽  
pp. 254-258 ◽  
Author(s):  
Tathiana Elisa Masetto ◽  
Ana Carla Resende Fraiz ◽  
José Márcio Rocha Faria

Abstract During germination, orthodox seeds lose their ability to tolerate desiccation resembling recalcitrant seeds. This research aimed to investigate the cell changes during the re-induction of the desiccation tolerance (DT) in Sesbania virgata germinated seeds with 1, 3 and 5 mm long radicles. To re-establish DT, germinated seeds were incubated for 72 h in polyethylene glycol (PEG, -2.04 MPa) before dehydration in silica gel (at 10% moisture content) followed by rehydration. Cell viability was assessed through TUNEL test in dry radicles and transmission electron microscopy in both fresh and dry radicles. The positive-TUNEL confirmed the DNA degradation, through the green fluorescence of the cell nuclei from 5 mm radicle length and the ultra structural evaluations detected loss of cellular content integrity in 3 and 5 mm cell radicles that did not survive dehydration to 10%.


1997 ◽  
Vol 7 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Jill M. Farrant ◽  
N. W. Pammenter ◽  
Patricia Berjak ◽  
Christina Walters

AbstractWater contents, desiccation tolerance, respiratory rates and subcellular characteristics of three contrasting seed types were studied during development.Avicennia marina(a tropical wetland species) andAesculus hippocastanum(a temperate species) produce recalcitrant seeds andPhaseolus vulgarisproduces orthodox seeds. During development,A. hippocastanumandP. vulgarisseeds showed a decline in water content and respiration rate with a concomitant increase in desiccation tolerance. These parameters did not change during the development ofA. marinaseeds once they had become germinable. There was a decrease in the degree of vacuolation and an increase in the deposition of insoluble reserves inA. hippocastanumandP. vulgarisseeds, whileA. marinaseeds remained highly vacuolated and did not accumulate insoluble reserves. Mitochondria and endomembranes degenerated during the development ofA. hippocastanumandP. vulgarisseeds, but remained unchanged inA. marinaseeds. The data are consistent with the hypothesis that extensive vacuolation and high metabolic rates contribute to desiccation sensitivity. However, the development of recalcitrantA. hippocastanumseeds is similar to that of orthodoxP. vulgarisseeds. These data are in accord with the concept of seed recalcitrance being a consequence of truncated development. The results suggest that there may be three categories of seeds: orthodox seeds which develop desiccation tolerance, seeds which show similar development to orthodox seeds, but are shed before desiccation tolerance is well developed, and seeds which show no developmental trends giving rise to increased tolerance.


2017 ◽  
Vol 39 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Ana Clara Ferreira Baptista Araujo ◽  
Claudio José Barbedo

Abstract: Seed storage is an important tool for ex situ conservation. Orthodox seeds can be stored for long periods, but recalcitrant seeds generally only for short periods. There is wide variation in the degree of desiccation tolerance between orthodox and recalcitrant seeds, leading authors to suggest levels of recalcitrance and, more recently, that there are variations in the stage of maturity at seed dispersal. Thus, recalcitrant behavior would be a result of premature dispersal from the mother plant. In this study, we sought to establish physiological relationships between different stages of development of immature orthodox Caesalpinia echinata seeds and the stages described for recalcitrant seeds to verify similarity of behavior. Therefore, we analyzed the desiccation tolerance of seeds collected at different ages, with and without PEG treatment, at different levels of drying (40%, 30%, 20% and 10% water content, wet basis). Changes in water potential, germination, vigor, and respiratory rates of the seeds were analyzed, and the results showed that: 1) desiccation tolerance increased as maturation proceeded; 2) PEG treatment did not induce desiccation tolerance; and 3) PEG treatment decreased the seed oxidation rate, which is the main factor in rapid seed deterioration of C. echinata in storage.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 479c-479
Author(s):  
L. Kozeko ◽  
V. Troyan ◽  
L. Musatenko

In orthodox seeds the cell division within the embryo meristems arrests during maturation at embryo moisture content (MC) 65% to 47%, and the maturation completion and transition of seeds to quiescent state occurs at MC about 10%. The arrest of cycling happens asynchronously in different meristematic tissues during desiccation: first in shoot and then in root. The aim of this work was to define a mitotic activity dynamics in recalcitrant seeds with the high MC at maturation end and the absence of quiescent state characteristic of it. The object was seeds of Acer saccharinum, using widely for planting of greenery in Kiev city. The mitotic activity was determined in 0.5 mm of the embryo root pole (RP) and 0.5 mm of the shoot pole with embryo leaves (SP). The A. sachharinum seeds completed them maturation at MC 53% (FW basis). During maturation the mitotic index (MI) in RP decreased from 3.2% in immature seeds (at embryos MC 80%) to 0 in mature seeds and in SP–from 5.4% to 3.3%, respectively. Cell division in SP arrested by dehydration of mature embryos to MC 46% by PEG 6000 (30%). The seeds lost viability by desiccation to MC 34%. The mature seeds were able to germinate immediately after abscission. During seed germination the cell division reactived in RP and increased in SP already before root protrusion. In plantlets 10–15 mm long the MI increased to 8% in RP and 12% in SP. Thus, the strategy of immediate germination of recalcitrant A. sachharinum seeds includes a preservation of cell division in SP of mature embryos, in contrast with orthodox seeds, and high mitotic activity levels in meristems of germinating embryos before and after root protrusion.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 391 ◽  
Author(s):  
Natalia Wojciechowska ◽  
Shirin Alipour ◽  
Ewelina Stolarska ◽  
Karolina Bilska ◽  
Pascal Rey ◽  
...  

Norway maple and sycamore produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. Drying affects reduction and oxidation (redox) status in seeds. Oxidation of methionine to methionine sulfoxide (MetO) and reduction via methionine sulfoxide reductases (Msrs) have never been investigated in relation to seed desiccation tolerance. MetO levels and the abundance of Msrs were investigated in relation to levels of reactive oxygen species (ROS) such as hydrogen peroxide, superoxide anion radical and hydroxyl radical (•OH), and the levels of ascorbate and glutathione redox couples in gradually dried seeds. Peptide-bound MetO levels were positively correlated with ROS concentrations in the orthodox seeds. In particular, •OH affected MetO levels as well as the abundance of MsrB2 solely in the embryonic axes of Norway maple seeds. In this species, MsrB2 was present in oxidized and reduced forms, and the latter was favored by reduced glutathione and ascorbic acid. In contrast, sycamore seeds accumulated higher ROS levels. Additionally, MsrB2 was oxidized in sycamore throughout dehydration. In this context, the three elements •OH level, MetO content and MsrB2 abundance, linked together uniquely to Norway maple seeds, might be considered important players of the redox network associated with desiccation tolerance.


2020 ◽  
Vol 22 (1) ◽  
pp. 101
Author(s):  
Galina Smolikova ◽  
Tatiana Leonova ◽  
Natalia Vashurina ◽  
Andrej Frolov ◽  
Sergei Medvedev

Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.


2020 ◽  
Vol 10 (18) ◽  
pp. 6244
Author(s):  
Denisa Atudorei ◽  
Georgiana Gabriela Codină

Nowadays, it may be noticed that there is an increased interest in using germinated seeds in the daily diet. This high interest is due to the fact that in a germinated form, the seeds are highly improved from a nutritional point of view with multiple benefits for the human body. The purpose of this review was to update the studies made on the possibilities of using different types of germinated legume seeds (such as lentil, chickpea, soybean, lupin, bean) in order to obtain bakery products of good quality. This review highlights the aspects related to the germination process of the seeds, the benefits of the germination process on the seeds from a nutritional point of view, and the effects of the addition of flour from germinated seeds on the rheological properties of the wheat flour dough, but also on the physico–chemical and sensory characteristics of the bakery products obtained. All these changes on the bread making process and bread quality depend on the level and type of legume seed subjected to the germination process which are incorporated in wheat flour.


2018 ◽  
Vol 40 (3) ◽  
pp. 221-236 ◽  
Author(s):  
Claudio José Barbedo

ABSTRACT: Water is essential, irreplaceable, and indispensable for any kind of carbon-based-life metabolic activity. Water-dependent living beings are the expected pattern in nature. However, some organisms can survive for some time at a minimum water content, such as seeds of some species (orthodox seeds). Nevertheless, the expected standard life behavior is found in seeds of another group of species, the so-called recalcitrant seeds, which are sensitive to desiccation. A huge range of different behaviors can be found between these two groups, leading authors to consider that orthodoxy and recalcitrance is not an all-or-nothing situation. Notwithstanding, we are still too far from understanding the differences and similarities between all these kinds of seeds and this has been a serious barrier to the development of plant conservation technologies. A new approach to understanding the differences between these seeds is presented here based on seed maturation, environmental influences, and evolution. From this point of view, all kinds of seed behavior are contemplated and, consequently, some new perspectives are considered for the recalcitrant seed conservation technology, the most intensely desired technology nowadays in this area.


1999 ◽  
Vol 9 (1) ◽  
pp. 13-37 ◽  
Author(s):  
N. W. Pammenter ◽  
Patricia Berjak

AbstractA suite of mechanisms or processes that together have been implicated in the acquisition and maintenance of desiccation tolerance in orthodox seeds is discussed in the context of the behaviour of desiccation-sensitive seeds, and where appropriate, parallels are drawn with the situation in vegetative plant tissues that tolerate dehydration. Factors included are: physical characteristics of cells and intracellular constituents; insoluble reserve accumulation; intracellular de-differentiation; metabolic ‘switching off’; presence, and efficient operation, of antioxidant systems; accumulation of putatively protective substances including LEAs, sucrose and other oligosaccharides, as well as amphipathic molecules; the presence and role of oleosins; and the presence and operation of repair systems during rehydration. The variable response to dehydration shown by desiccation-sensitive seeds is considered in terms of the absence or incomplete expression of this suite of mechanisms or processes.Three categories of damage are envisaged: (i) reduction in cell volume which can lead to mechanical damage; (ii) aqueous-based degradative processes, probably consequent upon deranged metabolism at intermediate water contents. This is termed ‘metabolism-induced damage’ and its extent will depend upon the metabolic rate and the rate of dehydration; and (iii) the removal of water intimately associated with macromolecular surfaces leading to denaturation: this is referred to as desiccation damagesensu stricto. The effects of drying rate and the maturity status of seeds are considered in relation to the responses to dehydration, leading to the conclusion that the concept of critical water contents on a species basis is inappropriate. Viewing seed postharvest physiology in terms of a continuum of behaviour is considered to be more realistic than attempting precise categorization.Rapid dehydration of excised embryonic axes (or other explants) from desiccation-sensitive seeds permits retention of viability (in the short term) to water contents approaching the level of non-freezable water. This opens up the possibility of long-term conservation, by cryopreservation techniques, of the genetic resources of species producing non-orthodox seeds.


Sign in / Sign up

Export Citation Format

Share Document