scholarly journals Eucalyptus sp. WOODCHIP POTENTIAL FOR INDUSTRIAL THERMAL ENERGY PRODUCTION1

2017 ◽  
Vol 41 (6) ◽  
Author(s):  
Marcos Antonio da Silva Miranda ◽  
Gabriel Browne de Deus Ribeiro ◽  
Sebastião Renato Valverde ◽  
Crismeire Isbaex

ABSTRACT The main objective of this work was to identify and analyze the potential of forest biomass of Eucalyptus sp. such as thermal energy source for industrial use in place of fossil fuels. Two cases were analyzed: the first one estimated the total demand for forest biomass to replace the main fossil fuels in Brazilian industrial sector, with scenarios of 100, 75 and 50% replacement; in the second, it was calculated the cost of each fuel for producing ton of industrial steam (thermal energy) for a dairy industry, in order to verify the competitiveness of forest biomass compared to fossil fuels. The results showed that the areas demanded to replace 100, 75 and 50% of the analyzed fossil fuels were, respectively, 2.9, 2.2 and 1.5 million planted forests hectares, and the steam ton cost ratio using the woodchips was at least 34% lower than with other fuels, which corroborates the substitution potential in this sector.

2021 ◽  
Vol 43 (5) ◽  
pp. 55-72
Author(s):  
V.V. Stanytsina ◽  
◽  
V.O. Artemchuk ◽  
O.Yu. Bogoslavska ◽  
◽  
...  

The article provides an overview of approaches to greenhouse gas emissions taxation and tax rates in European countries. To compare heated boilers with different characteristics, which run on different fuels the average cost of thermal energy for the life cycle LCOH was used. Environmental tax on environmental pollution (as a component of LCOH) is calculated for the three most common types of boilers in Ukrainian boilers with a capacity of 4.65 to 58 MW, burning natural gas, coal, and fuel oil, as well as for low-power boilers (0.5 and 1 MW ), burning fossil fuels and biofuels. The eco-tax for biofuel boilers is calculated under current taxation and subject to the adoption of a European approach to taxation of carbon dioxide emissions. It is established that at the current rates there are almost no economic incentives for the introduction of technologies to reduce the concentration of pollutants in emissions, but increasing the rates of environmental tax may change this situation. However, provided that rates are evenly increased for all types of boilers, the eco-tax for natural gas boilers will remain the lowest, while for biofuel boilers it will increase significantly, which contradicts the stated goal of decarbonizing the economy. It is shown that not only the change of environmental tax rates can be an effective tool for achieving the goals of sustainable development, as the principles of its administration are also important.


Author(s):  
Amanda D. Smith ◽  
Pedro J. Mago ◽  
Nelson Fumo

A combined heating and power system (CHP) can take the place of a conventional system with separate heating and power (SHP) where electricity is purchased from the grid. The CHP system provides electrical energy through a prime mover located near the building it serves, and waste heat from this generation is captured and delivered to the building to provide thermal energy. For a CHP system to show an economic advantage over a conventional system, its operating costs must be lower when providing the same amount of thermal energy and electricity that would have come from the SHP system. The spark spread (SS), or price difference between purchased electricity and fuel, is used as a simple indicator as to whether the CHP system is economically viable. Rather than using a single value of SS as a cutoff for viability of the CHP system, a more detailed spark spread expressed in terms of the efficiencies of the CHP system and SHP system components can be used to determine if a CHP system is economically viable. In an initial feasibility study, the calculation of the SS is based on estimates of a number of variables. It is important to assess the likely impact of changes in certain of some of these variables, as such changes can affect the SS calculations. This paper presents a sensitivity analysis to determine the effects of different parameters on the cost ratio which is used to calculate SS, including: reference heating system efficiency, power generation unit (PGU) efficiency and CHP overall system efficiency. Because CHP system efficiency itself is a function of the PGU efficiency as well as the thermal efficiency, these two parts of the total system efficiency are also investigated separately. Since the cost of purchased electricity and fuel varies by geographic region, the required spark spread for a given system may indicate favorable economics for a CHP system in one location while the CHP system shows no potential for savings in another location. Therefore, the sensitivity analysis is considered for three different U.S. locations.


2021 ◽  
Vol 78 (1) ◽  
pp. 122-131
Author(s):  
A. I. Pashentsev ◽  
N.V. Sakhova ◽  
A.A, Garmider ◽  
L.V. Pashentseva

Methodological approaches to estimating the cost of heat energy generated by boiler houses were updated with the introduction of additional indicators and parameters that correspond to the modern model of the country’s economic development. A program for calculating heat costs in C++, in the C++ Builder visual programming environment, has been developed. The program was tested on the example of a residential microdistrict.


2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


Author(s):  
Seyed Ehsan Hosseini

Renewable and sustainable energy has an evolving story as the ongoing trade war in the word is influencing crude oil prices. Moreover, the global warming is an inevitable consequence of the worldwide increasing rate of fossil fuel utilization which has persuaded the governments to invest on the clean and sustainable energy resources. In recent years, the cost of green energy has tumbled, making the price of renewables competitive to the fossil fuels. Although, the hydrogen fuel is still extremely expensive compared to the crude oil price, investigations about clean hydrogen fuel production and utilization has been developed significantly which demonstrate the importance of the hydrogen fuel in the future. This article aims to scrutinize the importance of green hydrogen fuel production from solar/wind energy.


2020 ◽  
Vol 4 (3) ◽  
pp. 1199-1207
Author(s):  
Amruta P. Kanakdande ◽  
Chandrahasya N. Khobragade ◽  
Rajaram S. Mane

The continuous rising demands and fluctuations in the prices of fossil fuels warrant searching for an alternative renewable energy source to manage the energy needs.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1297
Author(s):  
Juntae Kim ◽  
Hyo-Dong Han ◽  
Wang Yeol Lee ◽  
Collins Wakholi ◽  
Jayoung Lee ◽  
...  

Currently, the pork industry is incorporating in-line automation with the aim of increasing the slaughtered pork carcass throughput while monitoring quality and safety. In Korea, 21 parameters (such as back-fat thickness and carcass weight) are used for quality grading of pork carcasses. Recently, the VCS2000 system—an automatic meat yield grading machine system—was introduced to enhance grading efficiency and therefore increase pork carcass production. The VCS2000 system is able to predict pork carcass yield based on image analysis. This study also conducted an economic analysis of the system using a cost—benefit analysis. The subsection items of the cost-benefit analysis considered were net present value (NPV), internal rate of return (IRR), and benefit/cost ratio (BC ratio), and each method was verified through sensitivity analysis. For our analysis, the benefits were grouped into three categories: the benefits of reducing labor costs, the benefits of improving meat yield production, and the benefits of reducing pig feed consumption through optimization. The cost-benefit analysis of the system resulted in an NPV of approximately 615.6 million Korean won, an IRR of 13.52%, and a B/C ratio of 1.65.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
F. Ochs ◽  
W. Heidemann ◽  
H. Müller-Steinhagen

More than 30 international research and pilot seasonal thermal energy stores (TESs) were realized within the past 30 years. Experiences with operation of these systems show that TES are technically feasible and work well. Seasonal storage of solar thermal energy or of waste heat from heat and power cogeneration plants can significantly contribute to substitute fossil fuels in future energy systems. However, performance with respect to thermal losses and lifetime has to be enhanced, while construction costs have to be further reduced. This paper gives an overview about the state-of-the-art of seasonal thermal energy storage with the focus on tank and pit TES construction. Aspects of TES modeling are given. Based on modeled and measured data, the influence of construction type, system configuration, and boundary conditions on thermal losses of large-scale TES is identified. The focus is on large-scale applications with tank and pit thermal energy stores and on recent investigations on suitable materials and constructions. Furthermore, experiences with the operation of these systems with respect to storage performance are discussed.


Sign in / Sign up

Export Citation Format

Share Document