scholarly journals BIOFERTILIZERS AND BIOCONTROLLERS AS AN ALTERNATIVE TO THE USE OF CHEMICAL FERTILIZERS AND FUNGICIDES IN THE PROPAGATION OF YERBA MATE BY MINI-CUTTINGS

2019 ◽  
Vol 43 (4) ◽  
Author(s):  
Fermin Gortari ◽  
Maximo Ivan Petruk Nowosad ◽  
Margarita Esther Laczeski ◽  
Andrea Onetto ◽  
Iliana Julieta Cortese ◽  
...  

ABSTRACT The production of yerba mate seedlings through seeds has several limitations, which can be overcome by ex vitro vegetative propagation techniques such as the mini-cuttings, in which it is usually necessary to use synthetic chemical fertilizers and fungicides. However, there is a tendency towards sustainable agriculture, using biofertilizers (growth-promoting bacteria) and biocontrollers (Trichoderma sp.). Therefore, the objectives of this work were to evaluate the effect of biofertilizers on the production of mini-cuttings from yerba mate mini-stumps; as well as the effect, of biocontrollers on survival and rooting capacity of mini-cuttings. Strains of Bacillus sp. and Trichoderma asperelloides of yerba mate were used under two radiation conditions. There was a positive relationship between the availability of radiation and the production of mini-cuttings and the rooting capacity. All the mini-stumps sprouted regardless of treatments. The largest production of viable mini-cuttings occurred in a situation of high radiation and fertilization; while the treatments with growth-promoting bacteria and high radiation had intermediate values. The mini-cuttings inoculated with Trichoderma asperelloides had higher rooting percentage, greater number and length of roots than the mini-cuttings treated with fungicide. Therefore, we demonstrated that the use of chemical products can be replaced by biological ones and achieves acceptable yields.

2021 ◽  
Vol 58 ◽  
pp. 94-126
Author(s):  
A.G. Chentsov ◽  
A.A. Chentsov ◽  
A.N. Sesekin

The problem of sequential bypass of megalopolises is investigated, focused on the problem of dismantling a system of radiation hazardous objects under constraints in the form of precedence conditions. The radiation impact on the performers is assessed by the doses received during movements and during the performance of dismantling works. The route problem of minimizing the dose load of workers carrying out dismantling in one or another sequence of operations is considered. The procedure for constructing an optimal solution using a variant of dynamic programming is investigated. On this basis, an algorithm is built, implemented on a PC. Examples of the numerical solution of a model problem for the minimum dose load are given.


2017 ◽  
Vol 70 (2) ◽  
pp. 8169-8176 ◽  
Author(s):  
Oscar Darío Hincapié Echeverri ◽  
Alegría Saldarriaga Cardona ◽  
Cipriano Díaz Diez

In order to control the main diseases that affect blackberries (Rubus glaucus Benth.), a research in which 12 treatments to San Antonio ecotype plants originated in vitro was conducted. These treatments were: 1: Trichoderma harzianum+richoderma koningii (Tropical Fungus), 2: Trichoderma sp. (Bioprotection), 3: Trichoderma koningiopsis (Th003 Trichoderma), 4: Trichoderma asperellum (Th034 Trichoderma), 5: Trichoderma asperellum (T-30 Trichoderma), 6: Trichoderma asperellum (T-98 Trichoderma), 7:Burkholderia cepacia (Botrycid), 8: extract of Swinglea glutinosa (Ecoswin), 9: traditional farming treatments (Mancozeb, Propamocarb), 10: chemical products applications (Mancozeb, Mandipropamida, Carbendazim, Propamocar and Metalaxil+Mancozeb) alternated according to the impact of the disease, 11: chemical products applications alternated with organic products according to the suppliers recommendations and presence of the diseases, 12: absolute control, no treatment was applied to the plants. The applications were carried out every 15 days, each plant was an experimental unit and each treatment was made of five experimental units. 12 treatments were made through a RCBD (randomized complete block design) with three repetitions for a total of 15 experimental units per treatment. The assessments were performed every 8 days, and the variables were: number of healthy and sick fruits/treatment, costs/treatment and gross profit. A variance analysis and a Tukey test 5% were made. The best treatments were T11 (rotation of chemicals with biological products), T10 (rotation of chemical products according to the impact of the disease) and T3 (T. koningiopsis); considering the obtained performance/treatment, treatment cost and profit.


2014 ◽  
Vol 7 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Rabindra N. Padhy ◽  
Nabakishore Nayak ◽  
Shakti Rath

Abstract Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm) along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm) reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1788
Author(s):  
Alejandro Jiménez-Gómez ◽  
Zaki Saati-Santamaría ◽  
Martin Kostovcik ◽  
Raúl Rivas ◽  
Encarna Velázquez ◽  
...  

Rapeseed (Brassica napus L.) is an important crop worldwide, due to its multiple uses, such as a human food, animal feed and a bioenergetic crop. Traditionally, its cultivation is based on the use of chemical fertilizers, known to lead to several negative effects on human health and the environment. Plant growth-promoting bacteria may be used to reduce the need for chemical fertilizers, but efficient bacteria in controlled conditions frequently fail when applied to the fields. Bacterial endophytes, protected from the rhizospheric competitors and extreme environmental conditions, could overcome those problems and successfully promote the crops under field conditions. Here, we present a screening process among rapeseed bacterial endophytes to search for an efficient bacterial strain, which could be developed as an inoculant to biofertilize rapeseed crops. Based on in vitro, in planta, and in silico tests, we selected the strain Pseudomonas brassicacearum CDVBN10 as a promising candidate; this strain produces siderophores, solubilizes P, synthesizes cellulose and promotes plant height in 5 and 15 days-post-inoculation seedlings. The inoculation of strain CDVBN10 in a field trial with no addition of fertilizers showed significant improvements in pod numbers, pod dry weight and shoot dry weight. In addition, metagenome analysis of root endophytic bacterial communities of plants from this field trial indicated no alteration of the plant root bacterial microbiome; considering that the root microbiome plays an important role in plant fitness and development, we suggest this maintenance of the plant and its bacterial microbiome homeostasis as a positive result. Thus, Pseudomonas brassicacearum CDVBN10 seems to be a good biofertilizer to improve canola crops with no addition of chemical fertilizers; this the first study in which a plant growth-promoting (PGP) inoculant specifically designed for rapeseed crops significantly improves this crop’s yields in field conditions.


Author(s):  
Abel Antonio Taquichiri Ayaviri ◽  
Abdiel Mallco Carpio ◽  
Alan Almendras ◽  
Miguel Alejandro Ruiz Orellana ◽  
Carlos Portillo

2006 ◽  
Vol 54 (1) ◽  
pp. 121-125 ◽  
Author(s):  
S. P. Saikia ◽  
S. P. Saikia ◽  
V. Jain ◽  
V. Jain ◽  
G. C. Srivastava ◽  
...  

Research over the last few years has shown that inoculation with nitrogen-fixing bacteria of the genus Azorhizobium presents an alternative for (or supplement to) chemical fertilization, mainly due to the capability of the bacteria to produce plant growth- promoting hormones. The Azorhizobium caulinodans strain ORS 571 in combination with 2,4-D was able to colonize the root interior of an Indian maize cultivar. After transplanting to pots, it was noticed that nodulated and Azorhizobium -treated plants showed higher chlorophyll content in the leaf and enhanced nitrate reductase activity, leading to higher yield as compared to the control plants (non-nodulated). A plant growth-promoting effect was clearly visible in all inoculated plants examined. nodulated plants treated with Azorhizobium had higher physiological activities as compared to plants treated only with Azorhizobium . Azorhizobium therefore creates potentially better symbiosis in the form of para -nodules and promotes a higher level of nitrogen fixation, leading to better growth and plant development, with reduced requirements for chemical fertilizers.


1985 ◽  
Vol 36 (2) ◽  
pp. 285 ◽  
Author(s):  
RW Downes ◽  
ML Tonnet

Nine lines of guayule were grown in the field near Narrabri and Canberra. Rubber percentage and dry matter production were estimated after four years' growth. Although dry matter yield per plant was comparable in the two locations, the rubber content was higher at Narrabri. Rubber percentage was greater after winter than after summer, indicating that cool conditions were favourable for rubber accumulation. This was supported in phytotron studies where rubber percentage was much higher at 15/10 than 24/19�C day/night temperatures. In contrast, elongation of shoots was promoted by high temperature, high radiation conditions. In a phytotron study guayule transpired substantially less than wheat per unit leaf area. The agronomic consequences of these findings are discussed.


Sign in / Sign up

Export Citation Format

Share Document