scholarly journals Drying kinetics of sunflower grains

Author(s):  
Thaís A. de S. Smaniotto ◽  
Osvaldo Resende ◽  
Kelly A. de Sousa ◽  
Daniel E. C. de Oliveira ◽  
Rafael C. Campos

ABSTRACT The objectives of this study were to fit different mathematical models to experimental data of drying of sunflower grains, determine and evaluate the effective diffusion coefficient and obtain the activation energy for the process during the drying under various conditions of air. The sunflower grains were collected with an initial moisture content of 0.5267 dry basis (d.b.) and dried in an oven with forced air ventilation under five temperature conditions: 35, 50, 65, 80 and 95 °C, until reaching the moisture content of 0.0934 ± 0.0061 (d.b.). Among the analyzed models, Wang and Singh showed the best fit to describe the drying phenomenon. The effective diffusion coefficient of sunflower grains increased with the increment in air temperature and has activation energy for liquid diffusion in the sunflower drying of 29.55 kJ mol-1.

2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Daniel Emanuel Cabral de Oliveira ◽  
Osvaldo Resende ◽  
Jaqueline Ferreira Vieira Bessa ◽  
Adrieli Nagila Kester

The aims of this work were to adjust different mathematical models to experimental data describing the drying of the Valiosa cultivar soybean grain, to determine and to evaluate the effective diffusion coefficient and to obtain the activation energy and the thermodynamic properties of the drying process under different air conditions. The experiments were conducted at the Federal Institute of Education, Science and Technology of Goiás (Instituto Federal de Educação, Ciência e Tecnologia Goiano – Câmpus Rio Verde). The Valiosa cultivar soybean grains, with an initial moisture content on a dry basis of 0.56 (d.b., decimal), were dried in an oven with forced air ventilation at five different temperatures (40, 55, 70, 85 and 100°C) until reaching a moisture content of 0.133±0.019 (d.b.). Of the models analyzed, Page’s model was selected to best represent the drying phenomenon. The effective diffusion coefficient of soybeans increased with the air temperature and was described by the Arrhenius equation; an activation energy of 22.77 kJ mol–1 was reported for liquid diffusion in the drying of the soybeans. The enthalpy and entropy decreased with increasing temperature, while the Gibbs free energy increased with increasing drying temperature.


2019 ◽  
Vol 11 (5) ◽  
pp. 250 ◽  
Author(s):  
Wellytton Darci Quequeto ◽  
Osvaldo Resende ◽  
Patrícia Cardoso Silva ◽  
Fábio Adriano Santos e Silva ◽  
Lígia Campos de Moura Silva

Noni seeds have been used for years as an important medicinal source, with wide use in the pharmaceutical and food industry. Drying is a fundamental process in the post-harvest stages, where it enables the safe storage of the product. Therefore, the present study aimed to fit different mathematical models to experimental data of drying kinetics of noni seeds, determine the effective diffusion coefficient and obtain the activation energy for the process during drying under different conditions of air temperature. The experiment used noni seeds with initial moisture content of 0.46 (decimal, d.b.) and dehydrated up to equilibrium moisture content. Drying was conducted under different controlled conditions of temperature, 40; 50; 60; 70 and 80 ºC and relative humidity, 24.4; 16.0; 9.9; 5.7 and 3.3%, respectively. Eleven mathematical models were fitted to the experimental data. The parameters to evaluate the fitting of the mathematical models were mean relative error (P), mean estimated error (SE), coefficient of determination (R2), Chi-square test (c2), Akaike Information Criterion (AIC) and Schwarz’s Bayesian Information Criterion (BIC). Considering the fitting criteria, the model Two Terms was selected to describe the drying kinetics of noni seeds. Effective diffusion coefficient ranged from 8.70 to 23.71 × 10-10 m2 s-1 and its relationship with drying temperature can be described by the Arrhenius equation. The activation energy for noni seeds drying was 24.20 kJ mol-1 for the studied temperature range.


Author(s):  
Jéssica L. F. Souza ◽  
Daniel E. C. Oliveira ◽  
Geovana R. Plácido ◽  
Mariana B. Egea ◽  
Márcio Caliari ◽  
...  

ABSTRACT The objectives of this study were to fit mathematical models to the experimental data of the drying of the pequi mesocarp, determine the effective diffusion coefficient, and to obtain activation energy and thermodynamic and nutritional properties in different drying conditions. The mesocarp of pequi fruits, with an initial moisture content of 5.05 (decimal, dry basis), was dried in a forced ventilation oven at temperatures of 40, 50, 60 and 70 °C until the final moisture content of 0.15 ± 0.01 (decimal, dry basis). The mathematical models were adjusted by non-linear regression analysis using the Gauss-Newton method, considering the magnitude of the coefficient of determination (R2), the mean relative error (P) and the estimated mean error (SE). Among the models analyzed, the Midilli model presented the best fit. The effective diffusion coefficient increased with increase in temperature, and the activation energy on drying was 11.011 kJ mol-1. The enthalpy decreased with an increase in the drying temperature, while the entropy and Gibbs free energy increased with the drying temperature. The product obtained from drying has low lipid and high carbohydrate concentration, while temperatures above 70 °C could cause denaturation and/or protein complexation. The temperature of 60 °C is most suitable to obtain flour of pequi mesocarp, due to the shorter processing time while maintaining the nutritional quality.


Author(s):  
Gleyce K. I. Pinheiro ◽  
Daniel E. C. de Oliveira ◽  
Weder N. Ferreira Junior ◽  
Osvaldo Resende

ABSTRACT Yellow mombin (Spondias mombin L.) fruits have relevant characteristics for industrialization and exhibit a pleasant aroma and sour-sweet taste, with significant amounts of vitamin A and carotenoids in their epicarp. The objective was to fit different mathematical models to the experimental data, using as criteria to select the best model - the Akaike Information Criteria (AIC) and Schwarz’s Bayesian Information Criteria (BIC), as well as to evaluate the effective diffusion coefficient and to determine the activation energy for yellow mombin epicarp submitted to different drying conditions. The experiment was carried out at the Instituto Federal de Educação, Ciência e Tecnologia Goiano, Brazil The epicarp of yellow mombin fruits with initial moisture content of 2.89 (dry basis, d.b.) were submitted to drying at temperatures of 40, 50, 60 and 70 °C until final moisture contents of 0.11, 0.10, 0.09 and 0.08 (d.b.), respectively. The Midilli model showed the best fit to the experimental data obtained. The choice of the model was confirmed by the AIC and BIC criteria. The increase of the drying temperature promoted increase in the effective diffusion coefficient, and the activation energy of the process was 21.50 kJ mol-1.


Author(s):  
Weder N. Ferreira Junior ◽  
Osvaldo Resende ◽  
Gleyce K. I. Pinheiro ◽  
Lígia C. de M. Silva ◽  
Diene G. Souza ◽  
...  

ABSTRACT In the present study, the objective was to fit different models to the experimental data of drying of tamarind (Tamarindus indica L.) seeds and to select the best model, to determine the effective diffusion coefficient, activation energy and thermodynamic properties for the process during drying at different temperatures. The experiment was carried out at the Laboratory of Post-Harvest of Vegetable Products of the Instituto Federal Goiano (Federal Institute Goiano) - Campus of Rio Verde, GO, Brazil. Seeds with initial moisture content of 18 ± 0.25% dry basis were oven dried with forced air ventilation, at controlled temperatures of 45, 60, 75 and 90 °C in four repetitions. Nonlinear regression models used to describe the phenomenon were fitted to the experimental data. To represent the drying of tamarind seeds, the Midilli model was selected for the range from 45 to 60 ºC and the Two terms model was selected for the range from 75 to 90 ºC. The effective diffusion coefficient increases with the increase of drying air temperature, being described by the Arrhenius equation, with activation energy of 35.16 kJ mol-1. Enthalpy and entropy decreases, while Gibbs free energy increases with increasing drying temperature.


Author(s):  
Elton A. S. Martins ◽  
André L. D. Goneli ◽  
Alexandre A. Goncalves ◽  
Cesar P. Hartmann Filho ◽  
Valdiney C. Siqueira ◽  
...  

ABSTRACT Blackberry leaves have some pharmacological properties and one of the most widespread and studied uses is to relieve symptoms of the climacteric and other symptoms during the premenstrual period. Thus, drying becomes important for the conservation and storage of the product until its use or processing. The present study aimed to evaluate the drying kinetics of blackberry leaves, as well as to determine the effective diffusion coefficient and the activation energy during the drying process. Blackberry leaves were dried in an experimental fixed-bed dryer under four controlled temperature conditions (40, 50, 60 and 70 °C) and two drying air speeds (0.4 and 0.8 m s-1). With the experimental data of moisture ratio, eight mathematical models were fitted to represent the process of thin-layer drying of agricultural products. Based on the obtained results, it was found that the Midilli model represented best the phenomenon of drying of blackberry leaves. The increase in temperature and air speed reduced the drying time of blackberry leaves and increased the values of the effective diffusion coefficient. This relation can be described by the Arrhenius equation, which has an activation energy for the liquid diffusion during drying of 65.94 and 66.08 kJ mol-1, for drying air speeds of 0.4 and 0.8 m s-1, respectively.


2019 ◽  
Vol 11 (8) ◽  
pp. 225
Author(s):  
Wellytton Darci Quequeto ◽  
Valdiney Cambuy Siqueira ◽  
Geraldo Acácio Mabasso ◽  
Eder Pedroza Isquierdo ◽  
Rafael Araujo Leite ◽  
...  

As well as most agricultural products, some medicinal plants need to go through a drying process to ensure quality maintenance, however each product behaves differently. Therefore, the present study aimed to evaluate the drying kinetics of spiked pepper (Piper aduncum L.) leaves and determine their thermodynamic properties at different drying temperatures in laboratory scale. Leaves with initial moisture content of 78% w.b. (wet basis) were subjected to drying at temperatures of 40, 50, 60 and 70 ºC and air speed of 0.85 m s-1 in an experimental fixed bed dryer. The drying kinetics of the leaves was described by statistical fitting of mathematical models and determination of effective diffusion coefficient and activation energy. Enthalpy, entropy and Gibbs free energy were also evaluated for all drying conditions. It was concluded that, among the models evaluated, only Midilli and Valcam can be used to represent the drying of Piper aduncum leaves; the first for the two highest temperatures (60 and 70 ºC) and the second for 40 and 50 ºC. The activation energy was approximately 55.64 kJ mol-1, and the effective diffusion coefficient increase with the elevation of temperature. The same occurs with the values of Gibbs free energy, whereas the specific enthalpy and entropy decrease.


Author(s):  
Rafaiane M. Guimarães ◽  
Daniel E. C. de Oliveira ◽  
Osvaldo Resende ◽  
Jhessika de S. Silva ◽  
Thaisa A. M. de Rezende ◽  
...  

ABSTRACT ‘Okara’ is the insoluble part obtained after the aqueous extraction of soybeans, generated in large quantities as a by-product of the ‘tofu’ industry or soybean water-soluble extract. This work aimed to study ‘okara’ convective drying kinetics, determine the effective diffusion coefficient, and obtain activation energy and thermodynamic properties under different drying conditions. The by-product ‘okara’ was obtained from the processing of BRS 257 soybean water-soluble extract, homogenized and dried in a forced-air oven at temperatures of 40, 50, 60 and 70 °C until constant weight. Among the analysed models, Wang & Singh was selected to represent the drying phenomenon. Effective diffusion coefficient increased with the temperature rise, and the activation energy for the net diffusion in the drying was 28.15 kJ mol-1. Enthalpy and Gibbs free energy increased with the elevation of drying temperature.


2016 ◽  
Vol 12 (2) ◽  
Author(s):  
Hosain Darvishi ◽  
Zanyar Farhudi ◽  
Nasser Behroozi-Khazaei

Abstract Moisture diffusivity (Dem), mass transfer coefficient (hm), activation energy and drying kinetics of the dill leaves were studied and modeled as a function of temperature (40–70 °C) and moisture content (0.20–5.67 kg water/kg dry matter). Results showed that the Dem and hm significantly depend on the temperature and moisture content (p < 0.05). The average of Dem and hm varied between 4.02 × 10–9 to 9.65 × 10–9 m2/s, and 2.38 × 10–7 to 6.33 × 10–7 m/s, respectively. Activation energy showed a significant dependence on the moisture content and estimated as 16.84 kJ/mol for diffusion model and 28.70 kJ/mol for mass transfer model. Out of the six models considered, the logarithmic model showed the best fit to drying behavior of the dill leaves.


Sign in / Sign up

Export Citation Format

Share Document