scholarly journals Drying kinetics and thermodynamic properties of bitter melon (Momordica charantia L.) leaves

Author(s):  
Daniel P. da Silva ◽  
Samuel G. F. dos Santos ◽  
Isneider L. Silva ◽  
Hellismar W. da Silva ◽  
Renato S. Rodovalho

ABSTRACT Bitter melon (Momordica charantia L.) is a versatile plant that can be consumed as a food and has therapeutic applications. Studying its drying process is important to maintain their leaf quality during storage. The objective of this study was to evaluate the drying kinetics of bitter melon leaves and determine their thermodynamic properties. The leaves were placed in polyethylene trays and subjected to drying in an oven at temperatures of 20, 30, 40, and 50 °C until reaching hygroscopic equilibrium. The experimental data were fitted to several non-linear regression models to characterize the drying process. The Arrhenius model was used to obtain the coefficients of diffusion and the activation energy, which were used to calculate the enthalpy, entropy, and the Gibbs free energy. Midilli and Page were the best models to represent the drying kinetics of bitter melon leaves at temperatures of 20, 30, 40, and 50 °C. Increases in the drying air temperature increased the Gibbs free energy and water diffusivity in the interior of the leaves. Enthalpy and entropy decreased as the temperature was increased.

Author(s):  
Fernanda P. da Silva ◽  
Valdiney C. Siqueira ◽  
Elton A. S. Martins ◽  
Fábio M. N. Miranda ◽  
Rogerio M. Melo

ABSTRACT The aim of this study was to determine the effective diffusion coefficient and the thermodynamic properties of Bauhinia forficata Link leaves, considering two forms of thickness measurements and to describe the process by fitting mathematical models. The leaves were collected, taken to the laboratory and prepared to start the drying process in which four temperatures (40, 50, 60 and 70 °C) were applied. After the drying process, the effective diffusion coefficient was determined through the theory of diffusion in liquid, allowing to obtain the values of the activation energy, enthalpy, entropy and Gibbs free energy. The description of the drying process was performed by setting the thirteen mathematical models used to represent constant drying of agricultural products. The Valcam model was selected to represent the drying kinetics B. forficata Link. Increased temperature promotes: decreasing enthalpy and entropy; increasing Gibbs free energy and effective diffusion coefficient. The effective diffusion coefficient is higher when the rib thickness is considered; thus, it is recommended to standardize and/or specify the points of measurement of leaf thickness.


2020 ◽  
pp. 1810-1816
Author(s):  
Samuel Gonçalves Ferreira dos Santos ◽  
Jefferson Kran Sarti ◽  
Cassio da Silva Kran ◽  
Hellismar Wakson da Silva ◽  
Renato Souza Rodovalho ◽  
...  

Solanum gilo is a plant belonging to the family Solanaceae with a probable origin in Africa. It was introduced to Brazil by workers. The fruit is cultivated by small producers in Brazil and it is a source of food for the low-income population. Its seeds are harvested with high moisture contents, and the drying process is necessary. Sorption isotherms consist of the relation between water activity (aw) and moisture content of an agricultural product at a constant temperature. This information contributes to the drying process, thus favoring an increased longevity of agricultural products, such as seeds. This research aims to determine the desorption isotherms of Solanum gilo seeds and calculate their thermodynamic properties (enthalpy, entropy and Gibbs free energy). Sorption experiments were performed by the gravimetric static method using saline solutions. Several mathematical models were fitted to the experimental data, and the selection of the best model was performed by statistical criteria. Equilibrium moisture contents were obtained at 10, 20 and 30°C and at water activities between 0.111 and 0.985 (decimal). The modified Oswin model best represents moisture desorption isotherms of Solanum gilo seeds under the studied conditions. The energy required for the process was 0.22-555.68 kJ kg-1. The latent heat of vaporization (L), the enthalpy (Qst), the entropy (ΔS) and the Gibbs free energy (ΔG) increased with the reduction of the equilibrium moisture content of seeds. The theory of isokinetics is valid for the desorption process.


2019 ◽  
Vol 11 (8) ◽  
pp. 225
Author(s):  
Wellytton Darci Quequeto ◽  
Valdiney Cambuy Siqueira ◽  
Geraldo Acácio Mabasso ◽  
Eder Pedroza Isquierdo ◽  
Rafael Araujo Leite ◽  
...  

As well as most agricultural products, some medicinal plants need to go through a drying process to ensure quality maintenance, however each product behaves differently. Therefore, the present study aimed to evaluate the drying kinetics of spiked pepper (Piper aduncum L.) leaves and determine their thermodynamic properties at different drying temperatures in laboratory scale. Leaves with initial moisture content of 78% w.b. (wet basis) were subjected to drying at temperatures of 40, 50, 60 and 70 ºC and air speed of 0.85 m s-1 in an experimental fixed bed dryer. The drying kinetics of the leaves was described by statistical fitting of mathematical models and determination of effective diffusion coefficient and activation energy. Enthalpy, entropy and Gibbs free energy were also evaluated for all drying conditions. It was concluded that, among the models evaluated, only Midilli and Valcam can be used to represent the drying of Piper aduncum leaves; the first for the two highest temperatures (60 and 70 ºC) and the second for 40 and 50 ºC. The activation energy was approximately 55.64 kJ mol-1, and the effective diffusion coefficient increase with the elevation of temperature. The same occurs with the values of Gibbs free energy, whereas the specific enthalpy and entropy decrease.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


Author(s):  
Chang Peng ◽  
Saeed Moghaddam

Abstract Over the past two decades, due to the rising energy prices and growing awareness about climate change, significant efforts have been devoted to reducing the energy consumption of various home appliances. However, the energy efficiency of clothes dryers has little improvement. Recent innovations in the direct-contact ultrasonic fabric drying technique offer new opportunities for energy saving. In this technique, high-frequency mechanical vibrations generated by the ultrasonic transducer are utilized to atomize water from a fabric in the liquid form, which demonstrates great potential for reducing energy use and drying time of the fabric drying process. Here, for the first time, fabric drying kinetics under different direct-contact ultrasonic drying conditions were investigated experimentally and analytically. The drying processes of four kinds of fabrics were experimentally tested under different ultrasonic transducer vibration frequency (115, 135, and 155 kHz) and input power (1.2, 2.5, and 4.4 W) conditions. According to the experimental data, five different kinds of models were applied to quantify the drying kinetics of fabrics during direct-contact ultrasonic drying. The models not only incorporated the transducer parameters but also the parameters related to the nature of fabric. Our evaluation results of model prediction performance demonstrated that the two empirical models, i.e., the Weibull model and the Gaussian model, were superior to the three semi-theoretical models for anticipating the drying kinetics of fabrics under direct-contact ultrasonic drying. Furthermore, the Weibull model is more suitable for practical energy-efficient direct-contact ultrasonic fabric drying applications compared with the Gaussian model.


NANO ◽  
2016 ◽  
Vol 11 (09) ◽  
pp. 1650100 ◽  
Author(s):  
Zhi-Qiang Wang ◽  
Yong-Qiang Xue ◽  
Zi-Xiang Cui ◽  
Hui-Juan Duan ◽  
Xiao-Yan Xia

Dissolution of nanoparticles is involved in the preparation, research and application of nanomaterials, but there is a surprising difference in dissolution thermodynamics between nanoparticles and the corresponding bulk materials. In the paper, the relations of dissolution thermodynamic properties, equilibrium constant of nanoparticles, respectively, and particle size were derived by introducing interface variables and the surface chemical potential. Experimentally, the solubility of nano-barium sulfate with different average particle sizes at different temperatures were determined by the method of electrical conductivity, obtaining the influencing regularities of particle size on the dissolution thermodynamic properties and the equilibrium constant. The regularities are in accordance with the theory. The results show that there are remarkable effects of particle size of nanoparticles on the dissolution thermodynamic properties and the equilibrium constant; with the decreasing of the size of nanoparticles, the dissolution equilibrium constant increases, while the standard dissolution Gibbs free energy, the standard dissolution enthalpy and the standard dissolution entropy decrease; and the logarithm of the dissolution equilibrium constant, the standard dissolution Gibbs free energy, the standard dissolution enthalpy and the standard dissolution entropy are linearly associated with the reciprocal of particle size, respectively. This new theory provides a quantitative description of nanoparticles dissolution behavior, and has important scientific significance for understanding and predicting of thermodynamic regularity of dissolution concerned in the preparation, researches and applications of nanomaterials.


2020 ◽  
Vol 57 (3) ◽  
pp. 385
Author(s):  
Ramandeep Kaur ◽  
Satish Kumar ◽  
Mahesh Kumar ◽  
Aseeya Wahid ◽  
Md Shafiq Alam

Sign in / Sign up

Export Citation Format

Share Document