scholarly journals Effectiveness of electric toothbrush as vibration method on orthodontic tooth movement: a split-mouth study

2019 ◽  
Vol 24 (2) ◽  
pp. 49-55
Author(s):  
Muhammad Azeem ◽  
Ambreen Afzal ◽  
Saqib Ali Jawa ◽  
Arfan Ul Haq ◽  
Mahwish Khan ◽  
...  

Abstract Objective: To investigate the effects of application of vibratory stimuli, using an electric toothbrush, on the rate of orthodontic tooth movement during maxillary canine retraction. Methods: A split-mouth study was conducted in 28 subjects (mean age = 20.8 years; ranging from 18 to 24 years) whose bilateral maxillary first premolars were extracted with subsequent canine retraction. On the Vibration side, light force (100 g) was applied to the canine for 90 days, in combination with vibratory stimuli provided by an electric toothbrush; only orthodontic force was applied to the canine on the non-vibration side. Amount of canine movement was measured monthly. Related to electronic toothbrush usage, a diary was provided to each patient for recording discomfort during experimental period, having 100-mm visual analogue scale (VAS). The paired t-test was used to assess the differences in amount of tooth movement between canines of the vibration and non-vibration sides. Results: The amount of tooth movement was similar for canines on the vibration side and on the non-vibration side (mean 0.81 ± 0.10 mm and 0.82 ± 0.11 mm, respectively, p> 0.05). Plaque accumulation was minimal in any subject throughout the study. No subject reported discomfort as a result of using the electric toothbrush. Conclusions: This study demonstrates that application of vibratory stimuli using an electric toothbrush, in combination with light orthodontic force, do not accelerate orthodontic tooth movement.

2015 ◽  
Vol 5 ◽  
pp. 138-143 ◽  
Author(s):  
Harshal N. Suryavanshi ◽  
Vaishali R. Das ◽  
Aashish Deshmukh ◽  
Raj Rai ◽  
Mena Vora

Background and Objectives The average orthodontic treatment time for extraction therapy is 31 months. One of the main disadvantages of orthodontic treatment is time. Alveolar corticotomies have been used in conjunction with orthodontics to reduce the treatment time by increasing the rate of tooth movement. Concerns about the possible risks of corticotomy procedure have led to the modification of this technique. Germeç et al. reported a case treated by their modified corticotomy technique and noted reduced treatment time without any adverse effects on the periodontium and the vitality of teeth with their new conservative corticotomy technique. This study was undertaken to clinically evaluate the efficacy of the aforesaid technique. Materials and Methods A split-mouth study design was carried out to compare the rate of maxillary canine movement with and without modified corticotomy facilitated orthodontic treatment in 10 patients requiring maxillary first premolar extractions. The modified corticotomy procedure was performed on the maxillary arch unilaterally. The upper arch was immediately activated bilaterally after surgical procedure using equal orthodontic forces for retraction of the maxillary canines. The amount of tooth movement was recorded at an interval of every month till the completion of canine retraction. The rate of canine movement on experimental and control site was compared. The patients were followed for 6 months to check the occurrence of undesired effects such as root resorption, periodontal damage and loss of vitality of teeth on the experimental side. Results Higher mean velocity was observed in canines with modified corticotomy facilitated retraction compared to conventionally retracted canines; with the difference in mean velocity between the two groups was found to be clinically significant as well as statistically significant (P < 0.001). Interpretation and Conclusion The results suggested that modified corticotomy technique serves as an effective and safe way to accelerate orthodontic tooth movement, without adversely affecting the periodontium, root resorption, and the vitality of the teeth, as concluded by clinical and radiographic examination.


2019 ◽  
Vol 13 (03) ◽  
pp. 361-369
Author(s):  
Fatma Yalcin Zorlu ◽  
Hakan Darici ◽  
Hakan Turkkahraman

Abstract Objectives The aim of this study was to determine the effects of systemic fluoride intake on orthodontic tooth movement with histomorphometric and histopathologic methods. Materials and Methods Forty-eight Wistar albino rats were randomly divided into four groups of 12 rats each. Group I received fluoridated water and underwent orthodontic tooth movement. Group II received fluoridated water and did not undergo orthodontic tooth movement. Group III received nonfluoridated water and underwent orthodontic tooth movement. Group IV received nonfluoridated water and did not undergo orthodontic tooth movement. At the beginning of the experiment (T1), impressions were taken from the maxilla of the rats in groups I and III under general anesthesia, and a NiTi closed coil spring appliance was ligated between the left maxillary central incisors and maxillary first molar. The orthodontic force applied was approximately 75 g, and the duration of the experimental period was 18 days. During the experimental period, appliances were controlled daily. At the end of the experimental period (T2), the rats were sacrificed with an overdose of a ketamine/xylasine combination, and their impressions were obtained. The upper first molars were subsequently dissected for histological examination. Incisor–molar distance, number of osteoblasts, number of osteoclasts and periodontal ligament (PDL) space widths on the compression and tension sides were measured. Statistical Analysis All measurements were statistically analyzed with SPSS for Windows version 18.0 (SPSS Inc., Chicago, IL, USA). Repeated measures ANOVA and posthoc Tukey tests were used to compare the groups. Results No statistically significant difference was found with respect to the amount of tooth movement between the fluoridated and nonfluoridated groups (p > 0.05). Orthodontic force application increased the number of osteoblasts at the tension sides and reduced it at the compression sides (p < 0.001). An increased number of osteoclasts was observed in the nonfluoridated group relative to the fluoridated group (p < 0.01). Conclusions No difference was observed with respect to the amount of tooth movement between the fluoridated and nonfluoridated groups. Fluoride significantly reduced the number of osteoclasts in the experimental groups.


2015 ◽  
Vol 86 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Chidchanok Leethanakul ◽  
Sumit Suamphan ◽  
Suwanna Jitpukdeebodintra ◽  
Udom Thongudomporn ◽  
Chairat Charoemratrote

ABSTRACT Objectives:  To investigate the effects of application of vibratory stimuli on interleukin (IL)–1β secretion during maxillary canine distalization. Materials and Methods:  Split-mouth design study in 15 subjects (mean age, 22.9 years; range 19–25 years) whose bilateral maxillary first premolars were extracted with subsequent canine distalization. On the experimental side, light force (60 g) was applied to the canine for 3 months in combination with vibratory stimuli provided using an electric toothbrush 15 minutes a day for 2 months; only orthodontic force was applied to the contralateral control canine. Gingival crevicular fluid (GCF) was collected from the mesial and distal sides of each canine at each monthly appointment. IL-1β levels were analyzed using an enzyme-linked immunosorbent assay. Canine movement was measured monthly. Results:  Overall, enhanced IL-1β secretion was observed at the pressure sites of experimental canines compared to control canines (mean, 0.64 ± 0.33 pg/µL vs 0.10 ± 0.11 pg/µL, respectively, P &lt; .001). The accumulative amount of tooth movement was greater for the experimental canine than for the control canine (mean, 2.85 ± 0.17 mm vs 1.77 ± 0.11 mm, respectively, P &lt; .001). Conclusions:  This study demonstrates that, in combination with light orthodontic force, application of vibratory stimuli using an electric toothbrush enhanced the secretion of IL-1β in GCF and accelerated orthodontic tooth movement.


2021 ◽  
pp. 002203452110199
Author(s):  
Y. Xie ◽  
Q. Tang ◽  
S. Yu ◽  
W. Zheng ◽  
G. Chen ◽  
...  

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs) sensing biomechanical stimuli and subsequently releasing signals to initiate alveolar bone remodeling. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities are still unclear. This study demonstrates that the core circadian protein aryl hydrocarbon receptor nuclear translocator–like protein 1 (BMAL1) in PDLCs is highly involved in sensing and delivering biomechanical signals. Orthodontic force upregulates BMAL1 expression in periodontal tissues and cultured PDLCs in manners dependent on ERK (extracellular signal–regulated kinase) and AP1 (activator protein 1). Increased BMAL1 expression can enhance secretion of CCL2 (C-C motif chemokine 2) and RANKL (receptor activator of nuclear factor–κB ligand) in PDLCs, which subsequently promotes the recruitment of monocytes that differentiate into osteoclasts. The mechanistic delineation clarifies that AP1 induced by orthodontic force can directly interact with the BMAL1 promoter and activate gene transcription in PDLCs. Localized administration of the ERK phosphorylation inhibitor U0126 or the BMAL1 inhibitor GSK4112 suppressed ERK/AP1/BMAL1 signaling. These treatments dramatically reduced osteoclastic activity in the compression side of a rat orthodontic model, and the OTM rate was almost nonexistent. In summary, our results suggest that force-induced expression of BMAL1 in PDLCs is closely involved in controlling osteoclastic activities during OTM and plays a vital role in alveolar bone remodeling. It could be a useful therapeutic target for accelerating the OTM rate and controlling pathologic bone-remodeling activities.


2019 ◽  
Vol 8 (7) ◽  
pp. 2373
Author(s):  
PoonamK Jayaprakash ◽  
Rajeshwar Singh ◽  
Ankit Yadav ◽  
Meeta Dawar ◽  
Harpreet Grewal ◽  
...  

2020 ◽  
Vol 90 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Ahmed El-Timamy ◽  
Fouad El Sharaby ◽  
Faten Eid ◽  
Amr El Dakroury ◽  
Yehya Mostafa ◽  
...  

ABSTRACT Objective To investigate the effect of local injection of platelet-rich plasma (PRP) on the rate of orthodontic tooth movement. Materials and Methods Sixteen female patients were randomly allocated in a split-mouth study design to receive PRP injections with CaCl2 activating solution on one side (intervention side) while the other side received CaCl2 injection only (control side). Canine retraction was performed on 0.017 × 0.025-inch stainless steel archwire applying 1.5 N retraction force. PRP and CaCl2 injections were done at 0, 3, and 6 weeks. The duration of the study was 4 months. Data were collected from digitized models. Assessment of pain accompanying the procedure was done using a visual analogue scale. Results The rate of canine retraction was faster on the intervention side in the first 2 months, with a statistically significant difference in the first month (P = .049). On the other hand, the rate was statistically significantly slower on the intervention side in the third month following cessation of PRP injections (P = .02). Pain increased following injections on both sides. Conclusions PRP showed a positive potential to accelerate the rate of tooth movement when injected in the first 2 months. Repeated injections of PRP to maintain a steady rate of accelerated tooth movement warrant further investigation.


2018 ◽  
Vol 88 (6) ◽  
pp. 733-739 ◽  
Author(s):  
Nurhat Ozkalayci ◽  
Ersan Ilsay Karadeniz ◽  
Selma Elekdag-Turk ◽  
Tamer Turk ◽  
Lam L. Cheng ◽  
...  

ABSTRACT Objectives: To compare the extent of root resorption and the amount of tooth movement between continuous orthodontic force and intermittent orthodontic force that was activated in a similar way to a 4-week orthodontic adjustment period. Materials and Methods: Twenty-five patients who required the extraction of upper first premolars were recruited in this study. A buccally directed continuous force of 150 g was applied to the upper first premolar on one side for 15 weeks. A buccally directed intermittent force (28 days on, 7 days off) of the same magnitude was applied to the contralateral first premolar. The teeth were extracted at the end of the experimental period and processed for volumetric evaluations of resorption craters. The degree of tooth movement and rotation were measured on the study models. Results: Continuous force application displayed significantly higher root resorption volume than the intermittent force application (P &lt; .05), particularly on the buccal and lingual surfaces (P &lt; .05) and the middle third of the root (P &lt; .01). There was more tipping and rotational movement in the continuous force group. Conclusions: In a 4-week orthodontic adjustment period, intermittent force significantly reduced the amount of root resorption compared with continuous force. Although there was less degree of tooth movement with intermittent force, unwanted rotational movement was avoided. This is crucial in patients who are predisposed to orthodontically induced inflammatory root resorption, and the use of this intermittent regimen should be considered.


2014 ◽  
Vol 493 ◽  
pp. 327-330
Author(s):  
Moch. Agus Choiron ◽  
Endi Sutikno ◽  
Tri Handoko Wicaksono ◽  
Shigeyuki Haruyama

Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading by using spring coil. Spring coil design was made of round stainless steel wire and usually it was custom-made design. In the previous study, the orthodontic force on 30 gram is required to move maxillary incisor during experimental tooth movement in rat. In this study, optimization new design of spring coil is developed to fulfill the requirement of orthodontic force. The design variable of new spring coil design is set on variation of angle aperture (5oα 10o), hook length (10 mml20 mm) and hook diameter (0.012 inchD0.014 inch). From the result, it can be produced the optimum designs which 8.9oof angle aperture; 12 mm of hook length and 0.014 inch of hook diameter for fulfilling the requirement of orthodontic force on 30 gram force.


2020 ◽  
Vol 90 (6) ◽  
pp. 774-782
Author(s):  
Ng Heng Khiang Teh ◽  
Saritha Sivarajan ◽  
Muhammad Khan Asif ◽  
Norliza Ibrahim ◽  
Mang Chek Wey

ABSTRACT Objectives To investigate the effect of micro-osteoperforation (MOP) on the horizontal and vertical distribution of mandibular trabeculae bone volume fraction in relation to different MOP intervals during canine retraction. Materials and Methods This single-center, single-blinded, prospective randomized split-mouth clinical trial included 30 healthy participants aged 18 years and older, randomized into three groups of different MOP intervals (4, 8, and 12-weekly). Cone beam computed tomography images were taken to assess the bone volume fraction (bone volume over total volume or BV/TV). Results BV/TV was significantly reduced (mean difference: 9.79%, standard deviation [SD]: 11.89%; 95% confidence interval [CI]: 4.77, 14.81%; P &lt; .01) and canine retraction increased (mean difference: -1.25 mm/4 mo, SD: 0.79 mm; 95% CI: -1.59, -0.92 mm; P &lt; .01) with MOP, compared to control sites. MOP significantly changed the vertical and horizontal patterns of trabeculae bone with lower values nearer to intervention sites. Only the 4-weekly MOP interval group showed significant decrease in BV/TV (mean difference: 14.73%, SD: 12.88%; 95% CI: 3.96, 25.50%; P = .01) despite significant increase in canine retraction rate for all interval groups. With the use of MOP, BV/TV was found to be inversely correlated to the rate of canine retraction (r = -0.425; P = .04). Conclusions Mandibular trabecular alveolar bone volume fraction was reduced and rate of orthodontic tooth movement increased with MOP, especially in the 4-weekly interval. However, this effect was limited to the immediate interdental region of MOP.


2017 ◽  
Vol 90 (1) ◽  
pp. 93-98
Author(s):  
Adela Zimbran ◽  
Diana Dudea ◽  
Cristina Gasparik ◽  
Sorin Dudea

Background and aim. Orthodontic tooth movement (OTM) is a process whereby the application of a force induces bone resorption on the pressure side and bone apposition on the tension side of the lamina dura. However, only limited data are available on the in vivo behavior of the periodontal tissues. The aim of this study was to assess the changes of periodontal tissues, induced by the orthodontic canine retraction, using 40 MHz ultrasonography.Methods. Ultrasonographic evaluation of periodontal tissues was conducted in 5 patients with indication for orthodontic treatment. The upper first premolars were extracted bilaterally due to severe crowding, and the canines were distalized using elastomeric chain with a net force of 100 cN. Ultrasonographic scans (US scans) were performed before, during and after retraction, in three distinct areas of the canines buccal surface: mesial, middle and distal. The reference point was the bracket, which appeared hyperechoic on the US scan. Four different dimensions were obtained: D1 (depth of the sulcus), D2 (thickness of the gingiva), D3 (length of the supracrestal fibers), D4 (width of periodontal space).Results. An increase of D1 was observed in all three areas of the periodontium, during orthodontic treatment.  D3 was strongly correlated before and immediately after force delivery only for the mesial area (r=0.828, p<0.05). In total, 228 variables were statistically analyzed using Pearson’s correlation coefficients, in order to demonstrate the relationship between periodontal findings during orthodontic tooth movement.Conclusions. High-resolution ultrasonography has the capability to obviate changes in periodontal ligament space and free gingiva during orthodontic tooth movement.


Sign in / Sign up

Export Citation Format

Share Document