scholarly journals Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers

2012 ◽  
Vol 47 (8) ◽  
pp. 1095-1102 ◽  
Author(s):  
Víctor Pecina‑Quintero ◽  
José Luis Anaya‑López ◽  
Alfredo Zamarripa‑Colmenero ◽  
Noe Montes‑García ◽  
Carlos Nuñez‑Colín ◽  
...  

The objective of this work was to evaluate the diversity and genetic relationships between lines and varieties of the sweet sorghum (Sorghum bicolor) germplasm bank of the National Institute for Forestry, Agriculture and Livestock Research, Mexico, using AFLP and SSR markers. The molecular markers revealed robust amplification profiles and were able to differentiate the 41 genotypes of sweet sorghum evaluated. Analysis of the frequency and distribution of polymorphic fragments allowed for the detection of unique (AFLP) and rare (SSR) alleles in several genotypes (RBSS‑8, RBSS‑9, RBSS‑25, RBSS‑32, and RBSS‑37), indicating that these markers may be associated with a feature that has not yet been determined or may be useful for the identification of these genotypes. The genetic relationships indicated the presence of at least two types of sweet sorghum: a group of modern genotypes used for sugar and biofuel production, and another group consisting of historic and modern genotypes used for the production of syrups. Sweet sorghum genotypes may be used to develop new varieties with higher sugar and juice contents.

2010 ◽  
Vol 54 (4) ◽  
pp. 653-658 ◽  
Author(s):  
Z. Pei ◽  
J. Gao ◽  
Q. Chen ◽  
J. Wei ◽  
Z. Li ◽  
...  

2020 ◽  
Vol 3 ◽  
pp. 91-95
Author(s):  
A. Mammadov ◽  
◽  
A. Ipek ◽  
S. H. Teoman-Duran ◽  
S. A. Aghayeva ◽  
...  

In the article, genetic diversity of olive samples from Azerbaijan and Turkey, genotyping of natural populations and gene pools with molecular markers, associative mapping, genome analysis, carried out jointly genetic relationships between genotypes of olives and genetics originating from Azerbaijan and Turkey are studied by molecular analysis through their SSR markers. When the research work is successful, the results of this study will be demonstrated the presence of SSR markers to distinguish olive genotypes and further studies on olive production in both countries will be undertaken.


2007 ◽  
Vol 21 (4) ◽  
pp. 497-509 ◽  
Author(s):  
M. L. Ali ◽  
J. F. Rajewski ◽  
P. S. Baenziger ◽  
K. S. Gill ◽  
K. M. Eskridge ◽  
...  

2021 ◽  
Author(s):  
Varun Hiremath ◽  
Kanwar Pal Singh ◽  
Neelu Jain ◽  
Kishan Swaroop ◽  
Pradeep Kumar Jain ◽  
...  

Abstract Genetic diversity and structure analysis using molecular markers is necessary for efficient utilization and sustainable management of gladiolus germplasm. Genetic analysis of gladiolus germplasm using SSR markers is largely missing due to scarce genomic information. In the present investigation, we report 66.66% cross transferability of Gladiolus palustris SSRs whereas 48% of Iris EST-SSRs were cross transferable across the gladiolus genotypes used in the study. A total of 17 highly polymorphic SSRs revealed a total 58 polymorphic loci ranging from two to six in each locus with an average of 3.41 alleles per marker. PIC values ranged from 0.11 to 0.71 with an average value of 0.48. Four SSRs were selectively neutral based on Ewens-Watterson test. Analysis of genetic structure of 84 gladiolus genotypes divided whole germplasm into two subpopulations. 35 genotypes were assigned to subpopulation 1 whereas 37 to subpopulation 2 and rest of the genotypes recorded as admixture. Analysis of molecular variance indicated maximum variance (53.59%) among individuals within subpopulations whereas 36.55% of variation observed among individuals within total population. Least variation (9.86%) was noticed between two subpopulations. Moderate (FST = 0.10) genetic differentiation of two subpopulations was observed. Grouping pattern of population structure was consistent with UPGMA dendrogram based on simple matching dissimilarity coefficient (ranged from 01.6 to 0.89) and PCoA. Genetic relationships assessed among the genotypes of respective clusters assist the breeders in selecting desirable parents for crossing. SSR markers from present study can be utilized for cultivar identification, conservation and sustainable utilization of gladiolus genotypes for crop improvement.


Author(s):  
V. S. Mandrusova ◽  
I. S. Gordej ◽  
O. M. Lyusikov ◽  
V. E. Shimko ◽  
I. A. Gordej

In this work, the genetic diversity of the modern gene pool of the winter rye (S. cereal L.) of the Republic of Belarus from 20 actual breeding samples was investigated using 15 microsatellite (SSR) markers to develop divergent crossing combinations in breeding for heterosis. It was shown that the formed set of SSR markers is highly effective – the informational content index (PIC) varied from 0.50 to 0.83 and averaged 0.72. The most effective microsatellite markers (SCM28, SCM43, SCM101 and SCM102) were identified and can be successfully used to study the genetic diversity of rye. It has been established that the modern gene pool of the winter rye of the Republic of Belarus is generally characterized by fairly wide genetic diversity (interpopulation variability) – all collection samples are characterized by a unique allelic composition of the studied microsatellite loci. Based on investigation results, a hierarchical clustering dendrogram was constructed, which made it possible to determine the most genetically divergent combinations of crosses. The information obtained can be used for the development of an effective scheme allowing to develop new varieties and hybrids in the practical breeding of rye for heterosis.


2016 ◽  
Vol 8 (3) ◽  
pp. 1643-1648 ◽  
Author(s):  
M. P. Moharil ◽  
Dipti Gawai ◽  
N. Dikshit ◽  
M.S. Dudhare ◽  
P. V. Jadhav

In the present study, morphological and molecular markers (RAPD primers) were used to analyze the genetic diversity and genetic relationships among 21 accessions of Echinochloa spp. complex comprising the wild and cultivated species collected from Melghat and adjoining regions of Vidarbha, Maharashtra. The availability of diverse genetic resources is a prerequisite for genetic improvement of any crop including barnyard millet. A high degree of molecular diversity among the landraces was detected. Among the 21 genotypes, two major groups (A and B) were formed, at 67.28 % similarity, which clearly encompasses 15 accessions of E. frumentacea and 6 accessions of E. colona. Higher similarity was observed in accessions of E. frumentacea. The accessions IC 597322 and IC 597323 also IC 597302 and IC 597304 showed more than 94% similarity among themselves. The classification of genetic diversity has enabled clear-cut grouping of barnyard millet accessions into two morphological races (E. frumentacea and E. colona).


2021 ◽  
pp. 36-48
Author(s):  
Farhana Afrin Vabna ◽  
Mohammad Zahidul Islam ◽  
Md. Ferdous Rezwan Khan Prince ◽  
Md. Ekramul Hoque

Aims: The aim of the study was to determine the genetic diversity of twenty four Boro rice landraces using rice genome specific twelve well known SSR markers. Study Design: Genomic DNA extraction, PCR amplification, Polyacrylamide gel electrophoresis (PAGE) and data analysis-these steps were followed to perform the research work. Data was analysed with the help of following software; POWERMAKER version 3.25, AlphaEaseFC (Alpha Innotech Corporation) version 4.0. UPGMA dendrogram was constructed using MEGA 5.1 software. Place and Duration of Study: The study was conducted at the Genetic Resources and Seed Division (GRSD), Bangladesh Rice Research Institute (BRRI), Joydebpur, Gazipur, Bangladesh during the period of November 2017 to March 2018. Methodology: Simple Sequence Repeat (SSR) markers were used to assay 24 landraces of Boro rice collected from the Gene Bank of Bangladesh Rice Research Institute (BRRI). Results: A total fifty four (54) alleles were detected, out of which forty five (45) polymorphic alleles were identified. The Polymorphic Information Content (PIC) of SSR markers ranged from 0.08 (RM447) to 0.84 (RM206) with an average value of PIC = 0.49. Gene diversity ranges from 0.08 (RM447) to 0.86 (RM206) with an average value of 0.52. The RM206 marker can be considered as the best marker among the studied markers for 24 rice landraces. Dendrogram based on Nei’s genetic distance using Unweighted Pair Group Method of Arithmetic Mean (UPGMA) indicated the segregation of 24 genotypes into three main clusters. Conclusion: The result revealed that SSR markers are very effective tools in the study of genetic diversity and genetic relationships and this result can be conveniently used for further molecular diversity analysis of rice genotypes to identify diverse parent for the development of high yielding variety in rice.


Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 802-810 ◽  
Author(s):  
Muwang Li ◽  
Li Shen ◽  
Anying Xu ◽  
Xuexia Miao ◽  
Chengxiang Hou ◽  
...  

To determine genetic relationships among strains of silkworm, Bombyx mori L., 31 strains with different origins, number of generations per year, number of molts per generation, and morphological characters were studied using simple sequence repeat (SSR) markers. Twenty-six primer pairs flanking microsatellite sequences in the silkworm genome were assayed. All were polymorphic and unambiguously separated silkworm strains from each other. A total of 188 alleles were detected with a mean value of 7.2 alleles/locus (range 2–17). The average heterozygosity value for each SSR locus ranged from 0 to 0.60, and the highest one was 0.96 (Fl0516 in 4013). The mean polymorphism index content (PIC) was 0.66 (range 0.12–0.89). Unweighted pair group method with arithmetic means (UPGMA) cluster analysis of Nei's genetic distance grouped silkworm strains based on their origin. Seven major ecotypic silkworm groups were analyzed. Principal components analysis (PCA) for SSR data support their UPGMA clustering. The results indicated that SSR markers are an efficient tool for fingerprinting cultivars and conducting genetic-diversity studies in the silkworm.Key words: silkworm, Bombyx mori L., microsatellites, simple sequence repeat (SSR), genetic diversity.


2009 ◽  
Vol 7 (03) ◽  
pp. 244-251 ◽  
Author(s):  
Didiana Gálvez-López ◽  
Sanjuana Hernández-Delgado ◽  
Maurilio González-Paz ◽  
Enrique Noe Becerra-Leor ◽  
Miguel Salvador-Figueroa ◽  
...  

Genetic diversity and relationships among 112 mango (Mangifera indica) plants native to 16 states of Mexico and four controls [three mango cultivars (Ataulfo, Manila and Tommy Atkins) and one accession ofMangifera odorata] were evaluated based on amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) molecular markers. Mango germplasm shows broad dispersion through Mexico and genetically similar germplasm from different agroecological regions has previously been found by our group. Both AFLP and SSR analyses indicated high genetic similarity among mango populations that were clustered in two major groups: mangos from Gulf of Mexico coastline and mangos from Pacific Ocean coastline and locations far away from the sea. The highest genetic diversity was found within plants from each state, and significant genetic differentiation (FST = 0.1921, AFLPs and 0.1911, SSRs) was also observed among mango populations based on geographical origin and genetic status (cultivars versus landraces). Heterozygosity values ranged from low (0.38) to moderate (0.68), and no heterozygote deficits were found. The highest genetic variability was found in mango populations from Tabasco, Michoacán and Oaxaca. Data suggested that mangoes are subjected to natural or induced pollination, so segregation as well as genetic recombination plays major roles on genetic diversification of Mexican mangos. AFLP analysis was more robust than SSR for determining the genetic relationships among mango landraces from Mexico.


2013 ◽  
Vol 149 ◽  
pp. 11-19 ◽  
Author(s):  
Liming Wang ◽  
Shaojie Jiao ◽  
Yanxi Jiang ◽  
Hongdong Yan ◽  
Defeng Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document