scholarly journals Comparison of maps of spatial variability of soil resistance to penetration constructed with and without covariables using a spatial linear model

2012 ◽  
Vol 32 (2) ◽  
pp. 393-404 ◽  
Author(s):  
Fernanda de Bastiani ◽  
Miguel A. Uribe-Opazo ◽  
Gustavo H. Dalposso

A study about the spatial variability of data of soil resistance to penetration (RSP) was conducted at layers 0.0-0.1 m, 0.1-0.2 m and 0.2-0.3 m depth, using the statistical methods in univariate forms, i.e., using traditional geostatistics, forming thematic maps by ordinary kriging for each layer of the study. It was analyzed the RSP in layer 0.2-0.3 m depth through a spatial linear model (SLM), which considered the layers 0.0-0.1 m and 0.1-0.2 m in depth as covariable, obtaining an estimation model and a thematic map by universal kriging. The thematic maps of the RSP at layer 0.2-0.3 m depth, constructed by both methods, were compared using measures of accuracy obtained from the construction of the matrix of errors and confusion matrix. There are similarities between the thematic maps. All maps showed that the RSP is higher in the north region.

2018 ◽  
Vol 38 (5) ◽  
pp. 697-704 ◽  
Author(s):  
Jorge W. Cortez ◽  
Wéliton P. da S. Matos ◽  
Sálvio N. S. Arcoverde ◽  
Victor H. Cavassini ◽  
Igor Q. M. Valente

2020 ◽  
Vol 33 (2) ◽  
pp. 480-489
Author(s):  
MAIRA DA CUNHA SOUZA ◽  
FLAVIO PEREIRA DE OLIVEIRA ◽  
JOSÉVALDO RIBEIRO SILVA ◽  
ADRIANA FERREIRA MARTINS ◽  
PEDRO LUAN FERREIRA DA SILVA

ABSTRACT The objective of this work was to evaluate the spatial variability of resistance to penetration in soil under sugarcane crops subjected to different harvest methods in the North Coast microregion of the state of Paraiba, Brazil. The study was conducted in a Typic Hapludult under sugarcane crops, at the farms Santa Emília-II and Maria da Luz-I of the company Miriri Food and Bioenergy S/A, in the municipalities of Rio Tinto and Capim, respectively, state of Paraíba, Brazil. Three sugarcane areas with different harvest methods (manual, mechanized, and manual/mechanized) were selected. The sampling was done in plots of 100 × 100 m, using a grid of 20 × 20 m, covering planting rows and interrows; each intersection point of the grid was georeferenced, and the soil mechanic resistance to penetration was evaluated with the aid of an impact penetrometer (IAA/Planalsucar-Stolf) up to the depth of 0-0.6 m. Soil disturbed and undisturbed samples from the 0.0-0.1 and 0.1-0.2 m layers were collected for analyses of soil moisture, texture, clay dispersed in water, flocculation degree. A pure nugget effect was found in the 0.0-0.1 and 0.4-0.5 m soil layers in the rows of the areas with manual/mechanized harvest. The spherical model was found for most conditions evaluated. The results for the areas were similar, with amplitude of 25-49 m, indicating that the harvest management had no effect on the soil resistance to penetration. No compacted areas were found, and the spatial dependency of the resistance to penetration was characterized as moderate to strong.


2018 ◽  
Vol 10 (9) ◽  
pp. 275 ◽  
Author(s):  
Fabiane Pereira Machado Dias ◽  
Ésio de Castro Paes ◽  
Flávia de Jesus Nunes ◽  
Ana Carolina Rabelo Nonato ◽  
Neilon Duarte da Silva ◽  
...  

The degradation of pastures can be characterized by several factors, mainly due to the management adopted, so in view of the country’s territorial extension and the peculiarity of each region and soil type, it is essential to develop research to improve the monitoring of the system. The objective of this study was to evaluate the effect of different sample densities to establish a mesh that gives precision in maps of spatial variability of soil mechanical resistance to root penetration to pasture areas in the coastal tableland region of Northeast Brazil. In a pasture area, three sampling meshes were demarcated for georeferenced evaluation of soil mechanical resistance to root penetration: mesh 1 established in the dimensions of 50 × 50 m, mesh 2 of 100 × 100 m and mesh 3 of 150 × 150 m, totaling an area of 9 ha. The soil resistance to penetration was measured using an automated apparatus, coupled to a tractor. The variation found in the values of penetration resistance in subsurface can be related to the management adopted in the area, as well as the trampling of the animals. Data on soil penetration resistance in pasture showed that the most compacted zone was always below 30 cm depth by using different sample densities. The results allow us to conclude that the higher the density of the sampling mesh, the greater the accuracy of the data and that, independently of the sample mesh, it was possible to identify the layer of higher soil mechanical resistance to root penetration. 


2021 ◽  
Vol 51 (6) ◽  
Author(s):  
Edgar Salis Brasil Neto ◽  
Alexandre Russini ◽  
Lúcio de Paula Amaral ◽  
Paulo Jorge de Pinho ◽  
Marcelo Silveira de Farias ◽  
...  

ABSTRACT: This study determined the spatial variability of soil penetration resistance and yield of the soybean crop in lowland areas. The soil resistance to penetration at four different depths (0 to 0.10 m; 0.11 to 0.20 m; 0.21 to 0.30 m and 0.31 to 0.40 m), volumetric humidity of the soil at two depths (0 to 0.20 m and 0.21 to 0.40 m) and soybean yield were determined in an area of 1.13 hectares, using a sample mesh of 10 x 10 m. The corresponding data were subjected to descriptive statistical analysis. Pearson’s simple linear correlation analysis (p≤0.05) was conducted and the spatial dependence was assessed by analyzing the isotropic semivariograms using spherical, exponential, linear, and Gaussian models. The results showed that the soil penetration resistance increased with depth, with restrictive values to root growth between 0.05 and 0.35 m. There was no correlation between yield and soil penetration resistance, and the semivariograms did not show a defined ascending region regarding the soil penetration resistance data. For the conditions under which the experiment was conducted, the sample 10 x 10 m mesh was suitable for assessing the spatial variability of soil resistance to penetration in depths exceeding 0.10 m.


2016 ◽  
Vol 40 (3) ◽  
pp. 519-527 ◽  
Author(s):  
Kathleen Lourenço Fernandes ◽  
Adriana Aparecida Ribon ◽  
João Tavares Filho ◽  
Gustavo Dias Custódio ◽  
Leonardo Rodrigues Barros

ABSTRACT The soil resistance to penetration study helps in understanding the state of soil compaction, indicating how best to manage it. The present study aimed to verify the influence of time management in modeling curves of resistance to penetration in Oxisol under different uses and management of pastures and woodland in field conditions, using the stepwise procedure. The study was conducted in the Cerrado region. Five (5) systems of uses and management of pastures and native woodland were evaluated: ILPF: crop-livestock-forest integration; ILP: crop-livestock integration; P: Area in the extensive grazing system; MN: native woodland; PIQ: rotated picket. The experiments were assessed for the years 2012/13 and 2013/14. To obtain the models, an analysis with four independent variables was performed: Gravimetric moisture (X1), bulk density (X2), total porosity (X3) and organic matter (X4) and the dependent variable, soil resistance to penetration (Y). The multiple regression analysis by STEPWISE with F of 0.15 was used. The equation that best estimated the resistance to penetration was RP = 14.68 to 0.26 for Native Woodland in layers from 0.20 - 0.40 m with R2 indices of 0.97 in year 1. For year 2, the equation that estimated the resistance to penetration was obtained in the PIQ treatment, PR = - 15.94 - 0.29 PT + 15.87 DS + 0.05 MO. with R2 of 0.94.


1894 ◽  
Vol 1 (11) ◽  
pp. 496-499
Author(s):  
Henry H. Howorth

Mr. Deeley tells your readers that he has recently been to the summit of Mont Blanc, and has been studying the difference between névé and glacier ice. This is interesting; but we thought that a great many people had done the same thing during the last hundred years, and we thought that one of them, Forbes, had studied the famous Mountain and the phenomenoninquestion to good effect, not in a casual visit to the Alps, but in the course of many years of patient labour. Among other things we also thought he had shown that in a viscous body like ice, the slope of the upper surface necessary to make it begin to move is the same as the slope which, would be required to induce motion in the ice if its bed were inclined at an angle. He further collected considerable evidence to show what the least angle is upon which ice will begin to move. This is the slope, the least slope, available. It is nothing less than astounding to me that anyone should venture to postulate a Scand in avian ice-sheet in the North Sea until he had considered this necessary factor, and how it would operate.The Scand in avian ice-sheet was, I believe, the invention of Croll, who, sittinginhis arm-chair and endowed with a brilliant imagination, imposed upon sober science this extraordinary postulate. He did not dream of testing it by an examination of the coasts of Norway, or even of Britain, but put it forward apparently as a magnificent deduction. All deductions untested by experiment are dangerous. Thus it came about that the great monster which is said to have come from Norway, goodness knows by what mechanical process, speedily dissolved away on the application of inductive methods. Of course it still maintained its hold upon that section, of geologists who dogmatiseinprint a great deal about the Glacial period before they have ever seen a glacier at work at all; but I am speaking of those who have studied the problem inductively. First Mr. James Geikie, a disciple of Croll, was obliged to confess that this ice-sheet, which is actually said to have advanced as far as the hundred-fathom line in the Atlantic, and there presented a cliff of ice like the Antarctic continent, never can have reached the Faroes, which had an ice-sheet of their own. Next Messrs. Peach and Home were constrained to admit that no traces of it of any kind occur in the Orkneys, or in Eastern Scotland. They still maintained its presence in the Shetlands; however, this was upon evidence which is somewhat extraordinary. I do not mean the evidence as to the direction of the striation, which was so roughly handled by Mr. Milne-Home, but I mean the evidence they adduce that the boulders found on the islands are apparently all local ones, and that, contrary to the deposits of glaciers, they diminish in number as we recede from the matrix whence they were derived.


2005 ◽  
Vol 48 (6) ◽  
pp. 863-871 ◽  
Author(s):  
Amauri Nelson Beutler ◽  
José Frederico Centurion ◽  
Alvaro Pires da Silva

The objective of this study was determine the resistance to penetration (PR), least limiting water range (LLWR) and critical bulk density (Db-crit) for soybean yield in a medium-textured oxisol (Haplustox). The treatments represented the soil compaction by passing a tractor over the site 0, 1, 2, 4, and 6 times, with 4 replications in a randomized experimental design. Samples were collected from 0.02-0.05, 0.07-0.10 and 0.15-0.18 m depths. Soybean (Glycine max cv. Embrapa 48) was sowed in December 2002. Plant height, number of pods, aerial dry matter, weight of 100 seeds, and the yield in 3.6 m² plots were recorded. Soybean yield started reduction at the PR of 0.85 MPa and Db of 1.48 Mg m-3. The LLWR was limited in highest part by water content at field capacity (0.01 MPa tension) and in lowest part by water content at PRcrit, achieved the Db-crit to yield at 1.48 Mg m-3.


2009 ◽  
Vol 2009 ◽  
pp. 1-7
Author(s):  
Rodolfo Godoy ◽  
Osny Oliveira Santos Bacchi ◽  
Fernando Almeida Moreira ◽  
Klaus Reichardt

Soil decompaction is generally achieved through mechanical cultivation practices; however biological processes can significantly add to this process through root growth, development, and later senescence. This study was carried out in Piracicaba, SP, Brazil and had the purpose of selecting, among forty one pure pigeon pea lines, the most efficient genotypes that promote soil decompaction by roots penetrating compacted soil layers. Utilizing artificially compacted 30 mm high soil blocks, in a series of experiments, these lines were compared to the cultivar Fava Larga taken as a standard. Three lines were preliminarily selected out of the initial group, and afterwards, in more detailed screenings by monitoring soil resistance to penetration and also evaluating the behavior of Tanzania grass plants seeded after pigeon pea, two of them, g5-94 and g8-95, were selected as possessing the most fit root system to penetrate compacted soil layers.


2017 ◽  
Vol 37 (1) ◽  
pp. 98-105 ◽  
Author(s):  
Jorge W. Cortez ◽  
Munir Mauad ◽  
Luiz C. F. de Souza ◽  
Mauricio V. Rufino ◽  
Paulo H. N. de Souza

1975 ◽  
Vol 12 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Jackson M. Barton Jr. ◽  
Erika S. Barton

The Snyder breccia is composed of angular to subrounded xenoliths of migmatites and amphibolites in a very fine grained matrix. It is apparently intrusive into the metasediments of the Snyder Group exposed at Snyder Bay, Labrador. The Snyder Group unconformably overlies a migmatitic and amphibolitic basement complex and is intruded by the Kiglapait layered intrusion. K–Ar ages indicate that the basement complex is Archean in age (> 2600 m.y. old) and that the Kiglapait layered intrusion was emplaced prior to 1280 m.y. ago. Major and trace element analyses of the matrix of the Snyder breccia indicate that while it was originally of tonalitic composition, later it locally underwent alteration characterized by loss of sodium and strontium and gain of potassium, rubidium and barium. Rb–Sr isotopic analyses show that this alteration occurred about 1842 m.y. ago, most probably contemporaneously with emplacement of the breccia. The Snyder Group thus was deposited sometime between 2600 and 1842 m.y. ago and may be correlative with other Aphebian successions preserved on the North Atlantic Archean craton.


Sign in / Sign up

Export Citation Format

Share Document