scholarly journals Comparison of physical and mechanical properties of microwave-polymerized acrylic resin after disinfection in sodium hypochlorite solutions

2009 ◽  
Vol 20 (4) ◽  
pp. 331-335 ◽  
Author(s):  
Helena de Freitas Oliveira Paranhos ◽  
Letícia Resende Davi ◽  
Amanda Peracini ◽  
Rafael Bellini Soares ◽  
Cláudia Helena da Silva Lovato ◽  
...  

This study evaluated the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin after immersion in sodium hypochlorite (NaOCl), simulating 20 min of disinfection daily during 180 days. Forty disk-shaped (15 x 4 mm) and 40 rectangular (65 x 10 x 3 mm) specimens were prepared with a microwave-polymerized acrylic resin (Onda-Cryl). Specimens were immersed in either 0.5% NaOCl, 1% NaOCl, Clorox/Calgon and distilled water (control). Color measurements were determined by a portable colorimeter. Three parallel lines, separated by 1.0 mm, were registered on each specimen before and after immersion procedures to analyze the surface roughness. The flexural strength was measured using a 3-point bending test in a universal testing machine with a 50 kgf load cell and a crosshead speed of 1 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (?=0.05). There was no statistically significant differences (p>0.05) among the solutions for color, surface roughness and flexural strength. It may be concluded that immersion in NaOCl solutions simulating short-term daily use during 180 days did not influence the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin.

2015 ◽  
Vol 26 (4) ◽  
pp. 404-408 ◽  
Author(s):  
Carolina Noronha Ferraz Arruda ◽  
Danilo Balero Sorgini ◽  
Viviane de Cássia Oliveira ◽  
Ana Paula Macedo ◽  
Cláudia Helena Silva Lovato ◽  
...  

<p>This study evaluated color stability, surface roughness and flexural strength of acrylic resin after immersion in alkaline peroxide and alkaline hypochlorite solutions, simulating a five-year-period of use. Sixty disc-shaped (16x4 mm) and 60 rectangular specimens (65x10x3.3 mm) were prepared from heat-polymerized acrylic resin (Lucitone 550) and assigned to 3 groups (n=20) of immersion (20 min): C1: distilled water; AP: warm water and one alkaline peroxide tablet; SH: 0.5% NaOCl solution. Color data (∆E) were determined by a colorimeter and also quantified according to the National Bureau of Standards units. A rugosimeter was used to measure roughness (μm) and the flexural strength (MPa) was measured using a universal testing machine. Data were evaluated by Kruskal-Wallis followed by Dunn tests (color stability and surface roughness) and by one-way ANOVA and Bonferroni test (flexural strength). For all tests was considered α=0.05. AP {0.79 (0.66;1.42)} caused color alteration significantly higher than C1 {0.45 (0.37;0.57)} and SH {0.34 (0.25;0.42)}. The mean ∆Ε values quantified by NBS were classified as "trace" for C1 (0.43) and SH (0.31) and "slight" for AP (0.96). SH {-0.015 (-0.023;0.003)} caused significantly higher ΔRa than the C1 {0.000 (-0.004;0.010)} and AP {0.000 (-0.009;0.008)} groups. There was no statistically significant difference among the solutions for flexural strength (C1: 84.62±16.00, AP: 85.63±12.99, SH: 84.22±14.72). It was concluded that immersion in alkaline peroxide and NaOCl solutions simulating a five-year of 20 min daily soaking did not cause clinically significant adverse effects on the heat-polymerized acrylic resin.</p>


2013 ◽  
Vol 14 (1) ◽  
pp. 80-83 ◽  
Author(s):  
Naveen S Yadav ◽  
Teerthesh Jain ◽  
Amrita Pandita ◽  
SMA Feroz ◽  
UK Kartika ◽  
...  

ABSTRACT Aim The purpose of this study was to evaluate and compare the flexural strength of commercially available acrylic (trevalone) and modified polymethylmethacrylate (PMMA). Materials and methods Four groups were tested; Group 1— control group regular MMA, group 2—2% methacrylic acid, 88% MMA, group 3—16% methacrylic acid, 84% MMA group 4— 20% methacrylic acid, 80% MMA 15 resin specimens of each group were polymerized. After processing, the specimens were subjected for flexural strength testing using three point bending test in a Universal Testing Machine. All data was statistically analyzed with one-way ANOVA, differences within the groups were analyzed by Scheffe's analysis. Results As the ratio of incorporated methacrylic acid to PMMA increased, the flexural strength decreased. Analysis of data revealed a significant decrease in flexural strength of specimens (p < 0.000) after incorporation of 12%, 16%, 20% methacrylic acid to heat polymerized acrylic resin, when compared with the control group. Lowest flexural strength was observed with specimens containing 20% methacrylic acid and highest flexural strength was observed with specimens containing conventional monomer without methacrylic acid. Conclusion It was observed that as the concentration of methacrylic acid in heat polymerized acrylic resin increases, the flexural strength decreases. Lowest flexural strength was observed with specimens containing 20% methacrylic acid and highest flexural strength was observed with specimens containing conventional monomer without methacrylic acid. Clinical significance The major advantages of addition of methacrylic acid to polymethylmethacrylate could be for the elderly people with restricted manual dexterity or cognitive disturbances, especially for patients who do not follow an adequate denture cleansing protocol and diabetic patients who are more susceptible for denture stomatitis. How to cite this article Jain T, Yadav NS, Pandita A, Feroz SMA, Kartika UK, Singh PP. A Comparative Evaluation of Flexural Strength of Commercially Available Acrylic and Modified Polymethylmethacrylate: An in vitro Study. J Contemp Dent Pract 2013;14(1):80-83.


2013 ◽  
Vol 24 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Helena de Freitas Oliveira Paranhos ◽  
Amanda Peracini ◽  
Marina Xavier Pisani ◽  
Viviane de Cássia Oliveira ◽  
Raphael Freitas de Souza ◽  
...  

This study evaluated color stability, surface roughness and flexural strength of acrylic resin specimens after immersion in alkaline peroxide and alkaline hypochlorite, simulating a period of one and a half year of use of overnight immersion. Sixty disc-shaped (16X4 mm) and 80 rectangular specimens (65X10X3.3 mm) were prepared from heat-polymerized acrylic resin (Lucitone 550) and distributed into 4 groups (n=20): C1: without immersion, C2: 8 h immersion in distilled water; AP: 8 h immersion in alkaline peroxide effervescent tablet; SH: 8 h immersion in 0.5% NaOCl solution. Properties were evaluated at baseline and after the immersion. Color data were also calculated according the National Bureau of Standards (NBS). Results were analyzed statistically by ANOVA and Tukey's HSD test (α=0.05). AP (2.34 ± 0.41) caused color alteration significantly higher than C2 (0.39 ± 0.30) and SH (1.73 ± 0.52). The mean ΔE values were classified as indicial for C2 (0.36 ± 0.29) and noticeable for AP (2.12 ± 0.39) and SH (1.59 ± 0.48). SH (0.0195 ± 0.0150) caused significantly higher ΔRa (p=0.000) than the C2 (0.0005 ± 0.0115) and PA (0.0005 ± 0.0157) groups. There was no statistically significant difference (p=0.063) among the solutions for flexural strength (C1: 105.43 ± 14.93, C2: 100.30 ± 12.43, PA: 97.61 ± 11.09, SH: 95.23 ± 10.18). In conclusion, overnight immersion in denture cleansing solutions simulating a year and a half of use did not alter the flexural strength of acrylic resin but caused noticeable color alterations, higher for alkaline peroxide. The 0.5% NaOCl solution caused increase in surface roughness.


2021 ◽  
Vol 10 (3) ◽  
pp. e30510312486
Author(s):  
Patrícia Capellato ◽  
Ana Paula Rosifini Alves Claro

This study was done in order to evaluate the changes in flexural strength and surface roughness in dental material restorations after immersion in coffee. Bars specimens (2mm x 2mm x 25 mm) of Z100 3M/ESPE were made according to ISO 4049 using aluminum molds. After curing, the specimens were then randomly divided into five groups and conditioned at 37°C in physiological serum. In all groups, except control, samples were immersed in coffee for ten minutes daily. In group A, the samples were immersed in coffee. For group B, after to be immersed in coffee, samples were immersed in distilled water for one minute. For group C, samples were immersed in mouthwash for one minute. For group D, samples were brushing for ten minutes, with load of 250g and 4250 cycles after all treatments the samples were stored in physiological serum again. In control group, samples were only stored in physiological serum. The five groups were then divided into 2 subgroups according storage time, six and nine weeks, respectively. Flexural strength was determined using three point bending test in a universal testing machine. All the tests were carried out at a room temperature and samples were maintained in physiological serum during the test. Surface roughness measurements were made using a surface roughness tester. All data were analyzed using one-way analysis of variance (ANOVA) followed by Dunnet tests. The ANOVA indicated no difference in the means of surface roughness and significant was observed for flexural strength between control group and one group (coffee).


Author(s):  
Nazanin Keshmiri ◽  
Homayoon Alaghehmand ◽  
Faraneh Mokhtarpour

Objectives: This study aimed to evaluate the effects of hydrofluoric acid (HF) concentration and etching time on the surface roughness (SR) and three-point flexural strength of Suprinity and to analyze the surface elements before and after etching. Materials and Methods: To measure the SR, 70 specimens of Suprinity (2×4×5mm3) were assigned to seven groups (n=10). Six groups were etched for 20, 60, and 120 seconds with 5% and 10% HF and 7th group was the control group. Specimens were evaluated using atomic force microscopy (AFM). One specimen from each group was used to analyze the surface elements using scanning electron microscopy (SEM). For measuring the three-point flexural strength, 60 specimens were divided into six groups (n=10) and etched as previously described. The flexural strength was measured using a universal testing machine. T-test, one-way analysis of variance (ANOVA), and two-way ANOVA were used for statistical analyses (P<0.05). Results: The 10% concentration of HF caused higher SR compared to the 5% HF. The effect of HF concentration on the flexural strength was significantly different in the 20- and 60-second etching groups. Different etching times had no significantly different effect on the SR. With 5% HF, the flexural strength was significantly higher for 20-second etching time than for the etching times of 60 and 120 seconds. With 10% HF, there was a significant difference in flexural strength between etching times of 20 and 120 seconds. The atomic percentage (at%) of silica was enhanced by increasing the etching time. Conclusions: The best surface etching protocol comprises 10% HF used for 20 seconds.


2012 ◽  
Vol 9 (2) ◽  
pp. 15-18
Author(s):  
Kazi Ziaul Islam ◽  
Md Ali Asgor Moral ◽  
Md Mahbubur Rahman

Objectives: The aim of this study was to find out the proper curing time and flexural strength of heat cured acrylic resin cured in boiling water at 100°c with time difference and to compare the maximum flexural strength in optimum time. Methods: In this study, 60 heat cured acrylic resin samples were processed with compression moulding technique at 100°c among which each of 20 samples were cured for 20, 40 and 60 minutes separately. Flexural strength of samples was determined by using 3 point bending test by universal testing machine. Data was analyzed using ANOVA test and unpaired t-test. Results: The ANOVA result showed that there was no significant differences among the groups with respect to the mean flexural strength (P>0.05) and unpaired t-test also showed no significant differences among the groups. The mean flexural strength of acrylic resin cured at 100°c with compression moulding technique at 100°c at 20 minutes was 80.09±14.58 MPa, at 40 minutes was 79.71±13.1 MPa and at 60 minutes was 80.76±15.75 MPa. Conclusion: The flexural strength of heat cured acrylic denture base resin cured at 100°c for different period of time (at 20, 40 & 60 minutes) have given no significant differences. DOI: http://dx.doi.org/10.3329/cdcj.v9i2.12316 City Dental College J. Volume-9, Number-2, July-2012


2018 ◽  
Vol 21 (2) ◽  
pp. 150
Author(s):  
Jean Soares Miranda ◽  
Caroline Cotes Marinho ◽  
Vanessa Cruz Macedo ◽  
Aline Serrado de Pinho Barcellos ◽  
Thaís Chachuté Paradella ◽  
...  

<p><strong>Objetive</strong>: This research aimed to verify the performance of thermally activated acrylic resin (TAAR) combined with a mix of glass and aramid fibers and/or composite resin of indirect use by a tree point bending test. <strong>Material and Methods:</strong> Ten samples, with 65 x 10 x 2.5 mm, were prepared for each group (n = 10): CO, control of only TAAR; CR, in which an 60 mm indirect composite resin was polymerized together with the acrylic resin during the thermo-polymerization cycle; SS, in which ceramic glass mixed with aramid fibers cut 60 mm in length were incorporated into the samples; and SC, in which the same fibers were incorporated with addiction of the indirect composite resin. A three-point flexural strength test was performed with a universal testing machine with a load of 50KgF at a speed of 5 mm/min in the center of the samples supported by a suitable device. The reinforced face was placed to the tensile side. The statistical one-way ANOVA and Tukey tests were made with a significance level of 95%. <strong>Results</strong>: The mean value for the CO was 60,27 ± 24,18 MPa, for CR it was 38,39±12,75 MPa, for SS it was 79,97±12,75 Mpa and for CS it was 32,40±9,05 MPa. <strong>Conclusion</strong>: The use of glass and aramid fibers at the base of a TAAR increased the three-point flexural strength, however when indirect composite resin was incorporated, a significant drop of this mechanical property was observed.</p><p> </p><p><strong>Keywords</strong></p><p>Acrylic resin; Complete denture; Composite resin.</p>


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4077
Author(s):  
Amal S. Al-Qahtani ◽  
Huda I. Tulbah ◽  
Mashael Binhasan ◽  
Maria S. Abbasi ◽  
Naseer Ahmed ◽  
...  

This study aimed to compare the surface roughness, hardness, and flexure strength of interim indirect resin restorations fabricated with CAD-CAM (CC), 3D printing (3D), and conventional techniques (CV). Twenty disk (3 mm × Ø10 mm) and ten bar specimens (25 × 2 × 2 mm) were fabricated for the CC, 3D, and CV groups, to be used for surface roughness, micro-hardness, and flexural strength testing using standardized protocol. Three indentations for Vickers micro-hardness (VHN) were performed on each disk and an average was identified for each specimen. Surface micro-roughness (Ra) was calculated in micrometers (μm) using a 3D optical non-contact surface microscope. A three-point bending test with a universal testing machine was utilized for assessing flexural strength. The load was applied at a crosshead speed of 3 mm/min over a distance of 25 mm until fracture. Means and standard deviations were compared using ANOVA and post hoc Tukey–Kramer tests, and a p-value of ≤0.05 was considered statistically significant. Ra was significantly different among the study groups (p < 0.05). Surface roughness among the CC and CV groups was statistically comparable (p > 0.05). However, 3D showed significantly higher Ra compared to CC and CV samples (p < 0.05). Micro-hardness was significantly higher in 3D samples (p < 0.05) compared to CC and CV specimens. In addition, CC and CV showed comparable micro-hardness (p > 0.05). A significant difference in flexural strength was observed among the study groups (p < 0.05). CC and 3D showed comparable strength outcomes (p > 0.05), although CV specimens showed significantly lower (p < 0.05) strength compared to CC and 3D samples. The 3D-printed provisional restorative resins showed flexural strength and micro-hardness comparable to CAD-CAM fabricated specimens, and surface micro-roughness for printed specimens was considerably higher compared to CAD-CAM and conventional fabrication techniques.


Author(s):  
Saeed Noorollahian ◽  
Farinaz Shirban ◽  
Vahid Mojiri

Introduction: The daily use of orthodontic removable plates can interfere with the self-cleansing function of the mouth. Although various techniques have been proposed for cleaning removable orthodontic appliances, there is no consensus on the use of a safe method that preserves the physical properties of the appliance. This study aimed to investigate the effect of using hydrochloric acid (10%, for removal of mineral deposits) and sodium hypochlorite (5.25%, to remove organic matter and discolorations) on surface hardness and roughness of self-cure orthodontic acrylic resins. Materials & Methods: This cross-sectional laboratory study was conducted in the fall of 2017 at Isfahan University of Medical science and Isfahan University of Technology. In this study two orthodontic acrylic resins (Orthocryl® and Acropars®) were used. Eighty samples (12×10×3 mm) from each one were fabricated and divided into four groups (n = 20). Group 1: 15 minutes immersion in household cleaner liquid (Hydrochloric acid, 10%) followed by15 minutes immersion in household bleach liquid (Sodium Hypochlorite, 5.25%). In group 2, immersions were repeated just like group two times and in group 3, were done three times. Group 4 was as control and had no immersion. The surface hardness and roughness of samples were measured. Data were analyzed with Two Way ANOVA and the significance level was set at 0.05. Results: The number of immersion procedures did not significantly affect the surface hardness (p value = 0.958) and surface roughness (p value = 0.657) in the different study groups. There was no significant difference in the surface hardness between the two acrylic resin brands (p value = 0.077); however, Acropars acrylic resin samples exhibited significantly higher surface roughness compared to the Orthocryl acrylic resin samples(p value < 0.001). Conclusion: 15 minutes of immersion in 10% HCl, followed by 15 minutes of immersion in 5.25% NaOCl and repetition of the procedure three times did not significantly affect the surface hardness and roughness of self-cured acrylic resins.


Sign in / Sign up

Export Citation Format

Share Document