scholarly journals Influence of indirect reinforcements on the flexural strength of a thermally activated acrylic resin used for complete dentures

2018 ◽  
Vol 21 (2) ◽  
pp. 150
Author(s):  
Jean Soares Miranda ◽  
Caroline Cotes Marinho ◽  
Vanessa Cruz Macedo ◽  
Aline Serrado de Pinho Barcellos ◽  
Thaís Chachuté Paradella ◽  
...  

<p><strong>Objetive</strong>: This research aimed to verify the performance of thermally activated acrylic resin (TAAR) combined with a mix of glass and aramid fibers and/or composite resin of indirect use by a tree point bending test. <strong>Material and Methods:</strong> Ten samples, with 65 x 10 x 2.5 mm, were prepared for each group (n = 10): CO, control of only TAAR; CR, in which an 60 mm indirect composite resin was polymerized together with the acrylic resin during the thermo-polymerization cycle; SS, in which ceramic glass mixed with aramid fibers cut 60 mm in length were incorporated into the samples; and SC, in which the same fibers were incorporated with addiction of the indirect composite resin. A three-point flexural strength test was performed with a universal testing machine with a load of 50KgF at a speed of 5 mm/min in the center of the samples supported by a suitable device. The reinforced face was placed to the tensile side. The statistical one-way ANOVA and Tukey tests were made with a significance level of 95%. <strong>Results</strong>: The mean value for the CO was 60,27 ± 24,18 MPa, for CR it was 38,39±12,75 MPa, for SS it was 79,97±12,75 Mpa and for CS it was 32,40±9,05 MPa. <strong>Conclusion</strong>: The use of glass and aramid fibers at the base of a TAAR increased the three-point flexural strength, however when indirect composite resin was incorporated, a significant drop of this mechanical property was observed.</p><p> </p><p><strong>Keywords</strong></p><p>Acrylic resin; Complete denture; Composite resin.</p>

2013 ◽  
Vol 14 (1) ◽  
pp. 80-83 ◽  
Author(s):  
Naveen S Yadav ◽  
Teerthesh Jain ◽  
Amrita Pandita ◽  
SMA Feroz ◽  
UK Kartika ◽  
...  

ABSTRACT Aim The purpose of this study was to evaluate and compare the flexural strength of commercially available acrylic (trevalone) and modified polymethylmethacrylate (PMMA). Materials and methods Four groups were tested; Group 1— control group regular MMA, group 2—2% methacrylic acid, 88% MMA, group 3—16% methacrylic acid, 84% MMA group 4— 20% methacrylic acid, 80% MMA 15 resin specimens of each group were polymerized. After processing, the specimens were subjected for flexural strength testing using three point bending test in a Universal Testing Machine. All data was statistically analyzed with one-way ANOVA, differences within the groups were analyzed by Scheffe's analysis. Results As the ratio of incorporated methacrylic acid to PMMA increased, the flexural strength decreased. Analysis of data revealed a significant decrease in flexural strength of specimens (p < 0.000) after incorporation of 12%, 16%, 20% methacrylic acid to heat polymerized acrylic resin, when compared with the control group. Lowest flexural strength was observed with specimens containing 20% methacrylic acid and highest flexural strength was observed with specimens containing conventional monomer without methacrylic acid. Conclusion It was observed that as the concentration of methacrylic acid in heat polymerized acrylic resin increases, the flexural strength decreases. Lowest flexural strength was observed with specimens containing 20% methacrylic acid and highest flexural strength was observed with specimens containing conventional monomer without methacrylic acid. Clinical significance The major advantages of addition of methacrylic acid to polymethylmethacrylate could be for the elderly people with restricted manual dexterity or cognitive disturbances, especially for patients who do not follow an adequate denture cleansing protocol and diabetic patients who are more susceptible for denture stomatitis. How to cite this article Jain T, Yadav NS, Pandita A, Feroz SMA, Kartika UK, Singh PP. A Comparative Evaluation of Flexural Strength of Commercially Available Acrylic and Modified Polymethylmethacrylate: An in vitro Study. J Contemp Dent Pract 2013;14(1):80-83.


2010 ◽  
Vol 21 (6) ◽  
pp. 528-532 ◽  
Author(s):  
Ufuk İşerı ◽  
Zeynep Özkurt ◽  
Ender Kazazoğlu ◽  
Davut Küçükoğlu

The surface of zirconia may be damaged during grinding, influencing the mechanical properties of the material. The purpose of this study was to compare the flexural strength of zirconia after different grinding procedures. Twenty bar-type zirconia specimens (21 x 5 x 2 mm) were divided into 4 groups and ground using a high-speed handpiece or a low-speed straight handpiece until the bars were reduced 1 mm using two different grinding times: continuous grinding and short-time grinding (n=5). Control specimens (n=5) were analyzed without grinding. The flexural strengths of the bars were determined by using 3-point bending test in a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture load (N) was recorded, and the data were analyzed statistically by the Kruskal Wallis test at a significance level of 0.05. In the test groups, high-speed handpiece grinding for a short time had produced the highest mean flexural strength (878.5 ± 194.8 MPa), while micromotor continuous grinding produced the lowest mean flexural strength (733.8 ± 94.2 MPa). The control group was the strongest group (928.4 ± 186.5 MPa). However, there was no statistically significant differences among the groups (p>0.05). Within the limitations of the study, there was no difference in flexural strength of zirconia specimens ground with different procedures.


2012 ◽  
Vol 9 (2) ◽  
pp. 15-18
Author(s):  
Kazi Ziaul Islam ◽  
Md Ali Asgor Moral ◽  
Md Mahbubur Rahman

Objectives: The aim of this study was to find out the proper curing time and flexural strength of heat cured acrylic resin cured in boiling water at 100°c with time difference and to compare the maximum flexural strength in optimum time. Methods: In this study, 60 heat cured acrylic resin samples were processed with compression moulding technique at 100°c among which each of 20 samples were cured for 20, 40 and 60 minutes separately. Flexural strength of samples was determined by using 3 point bending test by universal testing machine. Data was analyzed using ANOVA test and unpaired t-test. Results: The ANOVA result showed that there was no significant differences among the groups with respect to the mean flexural strength (P>0.05) and unpaired t-test also showed no significant differences among the groups. The mean flexural strength of acrylic resin cured at 100°c with compression moulding technique at 100°c at 20 minutes was 80.09±14.58 MPa, at 40 minutes was 79.71±13.1 MPa and at 60 minutes was 80.76±15.75 MPa. Conclusion: The flexural strength of heat cured acrylic denture base resin cured at 100°c for different period of time (at 20, 40 & 60 minutes) have given no significant differences. DOI: http://dx.doi.org/10.3329/cdcj.v9i2.12316 City Dental College J. Volume-9, Number-2, July-2012


2009 ◽  
Vol 20 (4) ◽  
pp. 331-335 ◽  
Author(s):  
Helena de Freitas Oliveira Paranhos ◽  
Letícia Resende Davi ◽  
Amanda Peracini ◽  
Rafael Bellini Soares ◽  
Cláudia Helena da Silva Lovato ◽  
...  

This study evaluated the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin after immersion in sodium hypochlorite (NaOCl), simulating 20 min of disinfection daily during 180 days. Forty disk-shaped (15 x 4 mm) and 40 rectangular (65 x 10 x 3 mm) specimens were prepared with a microwave-polymerized acrylic resin (Onda-Cryl). Specimens were immersed in either 0.5% NaOCl, 1% NaOCl, Clorox/Calgon and distilled water (control). Color measurements were determined by a portable colorimeter. Three parallel lines, separated by 1.0 mm, were registered on each specimen before and after immersion procedures to analyze the surface roughness. The flexural strength was measured using a 3-point bending test in a universal testing machine with a 50 kgf load cell and a crosshead speed of 1 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (?=0.05). There was no statistically significant differences (p>0.05) among the solutions for color, surface roughness and flexural strength. It may be concluded that immersion in NaOCl solutions simulating short-term daily use during 180 days did not influence the color stability, surface roughness and flexural strength of a microwave-polymerized acrylic resin.


2010 ◽  
Vol 9 (3) ◽  
Author(s):  
Sicknan Soares da Rocha ◽  
Gelson Luis Adabo ◽  
Renata Garcia Fonseca

 The purpose of this study was to assess the effects of post-polymerization heat on the flexural strength of direct composites. Direct composite specimens (n=10), measuring 25×2×2 mm (Z-250 and P-60), were polymerized by 3 methods: (1) light-polymerized for 40 seconds, (2) (1) + post-polymerization in an oven at 120ºC for 20 minutes, and (3) (1) post-polymerization in an autoclave at 120ºC for 20 minutes. Specimens (n=10) of the indirect composite Artglass (control group) were polymerized in a UniXS oven. Specimens were stored in distilled water for 24 hours at 37ºC and then submitted to a flexural 3-point bending test with a universal testing machine. Flexural strength (MPa) data were analyzed by one-way ANOVA and Tukey´s multiple comparison test (α=.05). Results showed that (1) additional heat polymerization in an oven provided significantly (p<.05) higher flexural strengths (Z250: 158.85 MPa and P60: 147.10 MPa) than that of the Artglass resin (121.52 MPa); (2) with additional heat polymerization in an autoclave, these direct resins presented mean flexural strengths (Z250: 134.54 MPa and P60: 130.18 MPa) similar to that of Artglass (P>.05); (3) groups that were only light-polymerized (Z250: 124.75 MPa and P60: 128.96 MPa) were similar to Artglass (P>.05). When composites were only light-polymerized, they showed a flexural strength behavior similar to that of the indirect composite Artglass. The post-polymerization heat do not enhanced the resistance of the Filtek P60, but increased the strength of the Filtek Z250 when additional heat polymerization in a oven


Author(s):  
Dr. Pratik Bhatnagar

Aim: To assess and compare the impact of reinforcement of PMMA with glass fibre, polyethylene fibre and carbon fibres on flexural strength, fracture toughness and abrasive resistance. Background: In view of inadequate mechanical and physical characteristics of PMMA which include low impact strength and low surface hardness and resulting lowered clinical performance of the prosthesis, the study was designed to investigate the impact of reinforcement of PMMA with glass, polyethylene and carbon fibers on flexural strength, fracture toughness and abrasive resistance. Methods and Findings: Rectangular specimens (n=120; 30 each from 4 groups; 65 × 10 × 3.3 mm3) were fabricated and loaded on Universal Testing Machine until fracture for flexural strength and fracture toughness and on Taber Abrasive Tester for abrasive resistance. Data were analyzed using one–way ANOVA followed by Post Hoc test - Bonferroni multiple comparison analysis, using significance level of 0.05. Significant increase in fracture toughness was observed in specimens reinforced with polyethylene and carbon fiber, albeit the values of flexural strength were increased insignificantly. Specimens reinforced with glass and carbon fiber had significantly low values of abrasive resistance. Conclusion: Findings indicate that reinforcement of PMMA by non-specific fibers like glass, polyethylene and carbon resulted in significant increase in fracture toughness and decrease in abrasive resistance.


2013 ◽  
Vol 18 (4) ◽  
pp. 98-103 ◽  
Author(s):  
Alexandre Antonio Ribeiro ◽  
Ariane Vicente de Morais ◽  
Daniel Paludo Brunetto ◽  
Antonio Carlos de Oliveira Ruellas ◽  
Monica Tirre Souza de Araujo

INTRODUCTION: Orthodontic patients frequently present composite resin restorations, however there are few studies that evaluate the best way for orthodontic bonding in this situation. OBJECTIVE: The objective of this work was to evaluate the bond strength of orthodontic brackets in resin restorations with surface treatment. METHODS: Fifty one bovine lower incisors were randomly divided into three groups. On the control group (CG) the brackets were bonded to dental enamel; on experimental groups, brackets were bonded to resin restoration with diamond drill treatment (EGT) and with no treatment (EGN). The teeth were placed in PVC tubes with autopolymerized acrylic resin. The shear test was performed in EMIC universal testing machine. The groups were submitted to ANOVA analysis of variance with Tukey post test to verify the statistical difference between groups (α = 0.05). RESULTS: CG (6.62 MPa) and EGT (6.82 MPa) groups presented similar results, while EGN (5.07 MPa) obtained statistically lower results (p < 0.05). CONCLUSION: Therefore, it is concluded that the best technique for bonding of orthodontic brackets on composite resin restorations is the performance of surface detritions.


2013 ◽  
Vol 38 (5) ◽  
pp. E144-E153 ◽  
Author(s):  
M Chang ◽  
J Dennison ◽  
P Yaman

SUMMARY Purpose The purpose of this study was to evaluate the physical properties of current formulations of composite resins for polymerization shrinkage, surface hardness, and flexural strength. In addition, a comparison of Knoop and Vickers hardness tests was made to determine if there was a correlation in the precision between the two tests. Materials and Methods Four composite resin materials were used: Filtek LS (3M-ESPE), Aelite LS (Bisco), Kalore (GC America), and Empress Direct (Ivoclar). Ten samples of each composite (shade Vita A2) were used. Polymerization shrinkage was measured with the Kaman linometer using 2-mm-thick samples, cured for 40 seconds and measured with digital calipers for sample thickness. Surface microhardness samples were prepared (2-mm thick × 12-mm diameter) and sequentially polished using 600-grit silicone carbide paper, 9 μm and 1 μm diamond polishing solutions. After 24 hours of dry storage, Knoop (200 g load, 15 seconds dwell time) and Vickers (500 g load, 15 seconds dwell time) hardness tests were conducted. Flexural strength test samples (25 × 2 × 2 mm) were stored in 100% relative humidity and analyzed using a three-point bending test with an Instron Universal Testing Machine (Instron 5565, Instron Corp) applied at a crosshead speed of 0.75 ± 0.25 mm/min. Maximum load at fracture was recorded. One-way analysis of variance and Tukey multiple comparison tests were used to determine significant differences in physical properties among materials. Results Filtek LS had significantly lower shrinkage (0.45 [0.39] vol%). Aelite LS demonstrated the greatest Knoop surface hardness (114.55 [8.67] KHN), followed by Filtek LS, Kalore, and Empress Direct (36.59 [1.75] KHN). Vickers surface hardness was significantly greater for Aelite LS (126.88 [6.58] VH), followed by Filtek LS, Kalore, and Empress Direct (44.14 [1.02] VH). Flexural strength (MPa) was significantly higher for Aelite LS and Filtek LS (135.75 [17.35]; 129.42 [9.48]) than for Kalore and Empress Direct (86.84 [9.04]; 92.96 [9.27]). There is a strong correlation between results obtained using Knoop and Vickers hardness tests (r=0.99), although Vickers values were significantly greater for each material. Conclusion Results suggest that Aelite LS possesses superior hardness and flexural strength, while Filtek LS has significantly less shrinkage compared with the other composites tested.


2015 ◽  
Vol 26 (4) ◽  
pp. 404-408 ◽  
Author(s):  
Carolina Noronha Ferraz Arruda ◽  
Danilo Balero Sorgini ◽  
Viviane de Cássia Oliveira ◽  
Ana Paula Macedo ◽  
Cláudia Helena Silva Lovato ◽  
...  

<p>This study evaluated color stability, surface roughness and flexural strength of acrylic resin after immersion in alkaline peroxide and alkaline hypochlorite solutions, simulating a five-year-period of use. Sixty disc-shaped (16x4 mm) and 60 rectangular specimens (65x10x3.3 mm) were prepared from heat-polymerized acrylic resin (Lucitone 550) and assigned to 3 groups (n=20) of immersion (20 min): C1: distilled water; AP: warm water and one alkaline peroxide tablet; SH: 0.5% NaOCl solution. Color data (∆E) were determined by a colorimeter and also quantified according to the National Bureau of Standards units. A rugosimeter was used to measure roughness (μm) and the flexural strength (MPa) was measured using a universal testing machine. Data were evaluated by Kruskal-Wallis followed by Dunn tests (color stability and surface roughness) and by one-way ANOVA and Bonferroni test (flexural strength). For all tests was considered α=0.05. AP {0.79 (0.66;1.42)} caused color alteration significantly higher than C1 {0.45 (0.37;0.57)} and SH {0.34 (0.25;0.42)}. The mean ∆Ε values quantified by NBS were classified as "trace" for C1 (0.43) and SH (0.31) and "slight" for AP (0.96). SH {-0.015 (-0.023;0.003)} caused significantly higher ΔRa than the C1 {0.000 (-0.004;0.010)} and AP {0.000 (-0.009;0.008)} groups. There was no statistically significant difference among the solutions for flexural strength (C1: 84.62±16.00, AP: 85.63±12.99, SH: 84.22±14.72). It was concluded that immersion in alkaline peroxide and NaOCl solutions simulating a five-year of 20 min daily soaking did not cause clinically significant adverse effects on the heat-polymerized acrylic resin.</p>


2021 ◽  
Vol 10 (3) ◽  
pp. e30510312486
Author(s):  
Patrícia Capellato ◽  
Ana Paula Rosifini Alves Claro

This study was done in order to evaluate the changes in flexural strength and surface roughness in dental material restorations after immersion in coffee. Bars specimens (2mm x 2mm x 25 mm) of Z100 3M/ESPE were made according to ISO 4049 using aluminum molds. After curing, the specimens were then randomly divided into five groups and conditioned at 37°C in physiological serum. In all groups, except control, samples were immersed in coffee for ten minutes daily. In group A, the samples were immersed in coffee. For group B, after to be immersed in coffee, samples were immersed in distilled water for one minute. For group C, samples were immersed in mouthwash for one minute. For group D, samples were brushing for ten minutes, with load of 250g and 4250 cycles after all treatments the samples were stored in physiological serum again. In control group, samples were only stored in physiological serum. The five groups were then divided into 2 subgroups according storage time, six and nine weeks, respectively. Flexural strength was determined using three point bending test in a universal testing machine. All the tests were carried out at a room temperature and samples were maintained in physiological serum during the test. Surface roughness measurements were made using a surface roughness tester. All data were analyzed using one-way analysis of variance (ANOVA) followed by Dunnet tests. The ANOVA indicated no difference in the means of surface roughness and significant was observed for flexural strength between control group and one group (coffee).


Sign in / Sign up

Export Citation Format

Share Document