scholarly journals Effect of different carbon sources on the in vitro multiplication of Annona sp.

2011 ◽  
Vol 35 (3) ◽  
pp. 487-493 ◽  
Author(s):  
José Raniere Ferreira de Santana ◽  
Renato Paiva ◽  
Ana Valéria de Souza ◽  
Lenaldo Muniz de Oliveira

The Annonaceae family comprises approximately 2.300 species, some with significant commercial value. Although commercial plantations have suffered due to problems related to seedling production. As micropropagation is a viable technique for seedling production, the present work evaluated the effects of different carbon sources on in vitro bud induction in five Annonaceae species. Nodal segments obtained from plants of the Annona glabra, A. cauliflora, A. coriacea, A. bahiensis and Rollinia silvatica species were inoculated into solid WPM culture medium with 8.87 μM BAP, 0.86 mM of benomyl, and 87.64 mM of the following carbon sources: glucose, sucrose, fructose, galactose, sorbitol and maltose. We evaluated the buds number, the length and weight of the largest bud, the number of expanded leaves per bud, the length of the largest leaf and the dry matter of the buds. No significant difference was observed among the different carbon sources used in terms of the number of produced buds; however, the length of the largest bud, the number of expanded leaves, the length of the largest leaf, and dry weight of the buds presented significant difference according to the studied speciesas well as the carbon sources used, with the lowest value being obtained with sorbitol. The results obtained here indicated that, except for sorbitol, any of the carbohydrates tested could be used in the in vitro multiplication protocols for A. bahiensis, A. cauliflora, A. coriacea, A. glabra and R. silvatica.

2011 ◽  
Vol 35 (5) ◽  
pp. 916-923 ◽  
Author(s):  
José Raniere Ferreira de Santana ◽  
Renato Paiva ◽  
Ana Valéria de Souza ◽  
Lenaldo Muniz de Oliveira

The present work evaluated the effects of different types of culture flask seals and varying concentrations of sucrose and activated charcoal on the in vitro induction and growth of buds of Annona glabra L.; an edible fruit-producing species popularly known as "araticum". Nodal segments obtained from A. glabra plants maintained in green houses were surface sterilized and inoculated into a WPM culture medium solidified with 7 g L-1 of agar and supplemented with sucrose (0.00; 29.21; 58.63 and 116.84 mM), activated charcoal (0.0 and 2.0 g L-1), and 250 mg L-1 benomyl. In addition to the varying concentrations of sucrose and activated charcoal, we evaluated the efficiency of two types of test tube seals: PVC film, and cotton plugs. All possible combinations of caps and nutrient media were tested with 4 repetitions with 5 tubes each, evaluating the number of buds, the percentage of explant responses, the number of expanded leaves per bud, the length of the largest leaves, leaf abscission, and the length and dry weight of the buds. The type of seal influenced organogenesis in nodal segments of A. glabra, and no bud induction was observed in the absence of sucrose. The largest number of expanded leaves were obtained when 58.42 mM of sucrose was used in tubes sealed with cotton plugs, and leaf abscission was halved in the presence of activated charcoal. The greatest bud length and dry weight were obtained in tubes sealed with cotton plugs and in the presence of activated charcoal.


2020 ◽  
Vol 50 (3) ◽  
Author(s):  
Lilia Vieira da Silva Almeida ◽  
Vania Jesus dos Santos de Oliveira ◽  
Claudia Cecilia Blaszkowski de Jacobi ◽  
Weliton Antonio Bastos de Almeida ◽  
Mariane de Jesus da Silva de Carvalho

ABSTRACT: The increasing use of Vernonia condensata Baker highlights the importance of developing strategies to reduce the impact of exploitation on nature reserves. The aim of this study was to establish a micropropagation protocol to produce homogenous plants with high phytosanitary quality. Apical, nodal, and internodal segments of plants grown in the field were used for in vitro growth. The segments were disinfected in sodium hypochlorite solution (1.0 and 2.0%) for 15 and 30 minutes and then transferred to Petri dishes containing MS culture medium for 30 days. A completely randomized factorial experiment (3 x 2 x 2) with five replicates was designed. After this period, a completely randomized in vitro multiplication experiment was carried out with six treatments (BAP - 0.0; 0.5; 1.0; 1.5; 2.0; 2.5 mg L-1) and six replicates. The shoots obtained in the best treatment were transferred to flasks with rooting medium (MS, MS/2 or MS/4). The experiment was completely randomized with 12 replicates. Microplants were acclimatized in polyethylene terephthalate (PET) bottles filled with autoclaved topsoil. Our results showed that 40.0% of the nodal segments (immersed in 1.0% sodium hypochlorite for 30 minutes) were adequately disinfected and survived. In the in vitro multiplication experiment, the 0.5 mg L-1 concentration of BAP yielded the highest number of shoots and the best vegetative growth. With regard to the assessed characteristics, MS/4 was the best rooting medium, with 100% survival during acclimatization. This study showed that V. condensata in vitro culture might produce 32,000 seedlings in 7 months.


Author(s):  
Tecla Dos Santos Silva ◽  
Cristina Ferreira Nepomuceno ◽  
Bárbara Paula dos Santos Borges ◽  
Bruno Freitas Matos Alvim ◽  
José Raniere Ferreira De Santana

Caesalpinia pyramidalis is a species endemic to the Caatinga and known popularly as catingueira, which is widely used by local people, mainly for its timber and medicinal and fodder properties. This study investigated the effects of different types and concentrations of plant growth regulators on the in vitro multiplication of C. pyramidalis. In the first experiment, nodal segments were inoculated in media containing different combinations (0.0–8.0 µM) of BAP and NAA. In the second experiment, nodal segments wereinoculated in media containing different types (KIN, BAP and TDZ) and concentrations (0.0–16μM) of cytokinins. We used a WPM medium supplemented with 87.64 mM sucrose and solidified with 7.0 g L-1 agar. After 45 days, the highest number of shoots, leaf number, shoot length and dry mass of shoots were obtained when nodal segments were inoculated into a culture medium without plant growth regulators.


Nativa ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Marcos Vinícius Marques Pinheiro ◽  
Ana Cristina Portugal Pinto De Carvalho ◽  
Fabrina Bolzan Martins

No intuito de elevar as taxas de sobrevivência durante a etapa de aclimatização e posterior plantio a campo, avaliou-se o enraizamento in vitro de bananeira cv. Pacovan, em diferentes concentrações de sais MS e de sacarose. Utilizou-se DIC, esquema fatorial (6x2x3), com seis meios de cultura [sendo três concentrações de nutrientes do meio MS (100%; 50% de macronutrientes; e 50% dos sais macro e micronutrientes), e duas concentrações de sacarose (1,5/3,0%)], dois fotoperíodos (12/16 h) e três tempos de cultivo (21, 28 ou 35 dias) e seis repetições/tratamento. Analisaram-se: altura da planta, número de folhas/planta, massas frescas e secas das partes aérea e radicular. Para altura da planta, massa fresca da parte aérea e radicular, o meio MS 50% dos sais + sacarose (1,5%) com fotoperíodo de 16 h e tempo de cultivo de 35 dias foi satisfatório. Para massa seca da parte aérea foi MS 50% de sais + sacarose (3%), e para massa seca da parte radicular, MS 100% + sacarose (3%) (em 12hs/28 dias e 16hs/21 dias). Para o alongamento/enraizamento in vitro da bananeira cv. Pacovan sugere-se MS 50% de sais (macro e micronutrientes), redução ou manutenção de sacarose (1,5 ou 3%) em 16h/35 dias de cultivo.Palavra-chave: Musa spp., propagação in vitro, sistema radicular. CHANGES IN CULTURE MEDIUM, PHOTOPERIOD AND TIME OF CULTIVATION AFFECT THE IN VITRO ELONGATION AND ROOTING OF BANANA CV. PACOVAN ABSTRACT:In order to achieve high rates of survival during the acclimatization and later planting in the field, was evaluated the in vitro of banana cv. Pacovan plants under different concentrations of sucrose and MS basal salt mixture. The experiment was assembled in a DIC, in 6x2x3, six different culture media [three different MS salt mixture concentrations (100%; 50% of macronutrients; and 50% of macro/micronutrients) and two sucrose concentrations (1.5/3%)], two photoperiods (12/16 hours) and three cultivation times (21, 28 or 35 days). Each treatment was composed by 6 replicates. Plant height, number of leaves/plant, fresh and dry weight of roots and shoots, were analyzed. Satisfactory results for plant height and shoot and root fresh biomass were observed in MS with macro/micronutrients (50%) + sucrose (3%), 16 hours/35 days. The highest values of shoot dry weight were observed in MS with macro/micronutrients (50%) + sucrose (3%); the highest root dry weight was achieved with MS 100% + sucrose (3%) (12hs/28 and 16hs/21 days). The suggested medium for the in vitro elongation and rooting stage of banana cv. Pacovan is the MS with 50% of salts (macro and micronutrients), reduction or maintenance of sucrose (1.5 or 3%) in 16h/35 days of cultivation.Keywords: Musa spp., in vitro propagation, root system. DOI:


2018 ◽  
Vol 12 (2) ◽  
pp. 117
Author(s):  
Cecília Moreira Serafim ◽  
Arlene Santisteban Campos ◽  
Priscila Bezerra Dos Santos Melo ◽  
Ana Cecília Ribeiro de Castro ◽  
Ana Cristina Portugal Pinto de Carvalho

Faced with the demand for plants potted for their foliage, Anthurium maricense is seen as a viable option. However, most of the studies on obtaining micropropagated plantlets are for A. andraeanum, with nothing yet reported for A. maricense. The aim of this study therefore, was to evaluate the effect of four cytokinins in different concentrations, on the in vitro induction of shoots from nodal segments of A. maricense. The experimental design was completely randomised in a 4 x 4 factorial scheme, with four cytokinins (BAP, ZEA, CIN and 2iP) and 4 concentrations (0, 2.22, 4.44 and 6.66 μM), for a total of 16 treatments, with 6 replications of five test tubes, and using one nodal segment. Cultures were kept in a growth room at 25 ± 2°C, a photoperiod of 16 h and a light intensity of 30 μmolm-2 s-1 for 60 days. After this period, the number of shoots formed per node was evaluated. The addition of a cytokinin to the culture medium was determinant for the in vitro regeneration of shoots in A. maricense. The greatest estimated number of shoot formations in A. maricense were obtained in the culture media containing ZEA (3.87) and BAP (3.30), both at concentration of 6.66 μM.


2017 ◽  
Vol 29 (1) ◽  
pp. 188
Author(s):  
N. C. Negota ◽  
L. P. Nethenzheni ◽  
M. L. Mphaphathi ◽  
D. M. Barry ◽  
T. L. Nedambale

The in vitro culture media and assisted hatching techniques remain challenging obstacles to be utilised widely. Mechanical, chemical, enzymatic thinning, and laser-assisted techniques have been used previously but information is still lacking on its application in livestock. The aim of this study was to compare the effect of 2 in vitro culture media (Hamster F10 and TMC-199) and 4 (mechanical, chemical, enzymatic, and laser) assisted hatching techniques on blastocyst formation and hatching rate using murine embryos as a model. The C57/b and Balb/c breeds were raised until they reached maturity and bred naturally to produce F1 generation. The light in the breeding house was controlled at 14 h light and 10 h dark. Feed and water were provided ad libitum for the mice. Superovulation of females were stimulated using equine chorionic gonadotropin and human chorionic gonadotropin. The F1 generation was used for the collection of the 400 blastocysts and randomly allocated into 4 assisted hatching techniques. Blastocysts were paired into a group of 10 and replicated 4 times for each assisted hatching technique. The general linear model of SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used to analyse the data. Assisted hatching techniques of laser, mechanical, enzymatic, and chemical yielded 46.9 ± 37.1, 51.1 ± 40.2, 39.1 ± 35.8, and 33.3 ± 4.5%, respectively, under in vitro culture of Hamster F10. The TCM-199, laser, mechanical, enzymatic, and chemical assisted hatching techniques yielded 56.3 ± 43.3, 52.6 ± 35.5, 49.2 ± 37.5, and 33.9 ± 35.5%, respectively, with a significant difference. There was no significant difference observed in assisted hatching techniques and Hamster F10 culture medium. However, the hatching rate of embryos for all techniques was higher when in vitro cultured in TCM than cultured in Hamster F10. Hatching rate of blastocysts increased from chemical, enzymatic, mechanical, and laser with response to Hamster F10 and TCM; thus, laser is a suitable assisted hatching technique with TCM-199.


2018 ◽  
Vol 42 (6) ◽  
Author(s):  
Denys Matheus Santana Costa Souza ◽  
Aloisio Xavier ◽  
Wagner Campos Otoni ◽  
Natane Amaral Miranda ◽  
Joane Helena Maggioni

ABSTRACT Micropropagation via axillary bud proliferation is recommended for rejuvenation or reinvigoration of selected clones, as well as for improving clonal seedlings rooting. The success of a micropropagation protocol depends on the in vitro introduction, since following phases, multiplication, elongation, and rooting can only take place once the aseptic crop with vegetative vigor has been established. This study aims to assess the effect of light on the in vitro introduction of hybrid clones of Corymbia torelliana x C. citriodora e Corymbia citriodora x C. torelliana by the micropropagation technique through proliferation by axillary buds. The mini-stumps, suppliers of explants for in vitro introduction, were conducted in semi-hydroclonal mini-clonal hedge. Nodal segments from three Corymbia torelliana x C. citriodora (TC01, TC02 e TC03) clones and one Corymbia citriodora x C. torelliana (CT01) clone were collected, disinfested and inoculated in JADS culture medium, in order to compare the effects of light quality from a dark/fluorescent lamp, a fluorescent lamp, and white and red/blue LEDs. At 30 days after inoculation, the following characteristics were evaluated: average contamination percentage, oxidation, non-reactive explants, shoot length and average number of shoots per explant greater than 0.5 cm. Gathered data showed that the use of red/blue LED light source obtained the best results in all assessed characteristics in the in vitro introduction.


2012 ◽  
Vol 7 (5) ◽  
pp. 931-940 ◽  
Author(s):  
Dagmar Skálová ◽  
Božena Navrátilová ◽  
Lenka Richterová ◽  
Michal Knit ◽  
Michal Sochor ◽  
...  

AbstractMany populations of high-mountainous relic dioecious willows in Central Europe only consist of female individuals and are thus limited in their reproductive potential. We completed micropropagation experiments with shoot apexes and nodal segments of common and endangered willow (Salix) species, which can help to reintroduce autochthonous genotypes to their natural sites. Until recently, cultivation of green young shoot apexes of S. alba and S. lapponum showed the highest percentage of regeneration. We successfully applied the two-times-sterilisation due to high contamination of natural explants. The OK medium was the most efficient culture medium. In vitro propagation of willows with unisexual catkins, anther and ovule cultures were tested and optimised. Isolated anthers were cultivated on selected media and then microcallus and calluses of S. caprea and calluses of S. viminalis were formed on the A medium. Among various tested and optimised media for the ovule culture, the CP medium was the most efficient one. In this case, only the microcalluses of S. viminalis were observed. We developed biotechnological procedures that can be useful in conserving fragmented populations of high-mountainous willows.


2008 ◽  
Vol 396-398 ◽  
pp. 123-126
Author(s):  
Timothy Wilson ◽  
Reeta Viitala ◽  
Mervi Puska ◽  
Mika Jokinen ◽  
Risto Penttinen

The role of silica and macrophages in fibrosis is well documented, but in bone formation it is relatively unknown despite decades of research with bioactive glasses. In this study macrophages were isolated from rat peritoneal and then cultured for five days in the presence of two types of silica microparticles with different solubilities. After the fifth day the culture medium was collected, purified and used as an additive in bone marrow derived rat stem cell cultures. The stem cells were cultured for five days in α-mem containing only 0,5% of FCS, enabling cell survival but disrupting their proliferation. As controls, stem cells were also cultured in α-mem containing silica microparticles. At days one and five the amount of soluble collagen was assayed from the culture medium and the cells were counted. All stem cell cultures with macrophage medium additives were found to be proliferative, with statistically significant difference to controls. However, collagen was only produced in cultures containing medium from macrophages cultured with fast-dissolving silica microparticles. This suggests that silica can induce cell proliferation and extra cellular matrix protein secretion which is mediated by macrophages, and that the solubility of silica is also a major factor in this reaction.


1992 ◽  
Vol 117 (2) ◽  
pp. 313-316 ◽  
Author(s):  
A. Raymond Miller ◽  
Joseph C. Scheereus ◽  
Patricia S. Erb ◽  
Craig K. Chandler

A tissue culture protocol was developed that increased the germination percentage and decreased the lag time to germination for strawberry (Fragaria x ananassa Duch.) achenes. This technique involved cutting surface-sterilized achenes across the embryo axis then placing the shoot apex/radicle-containing sections on semisolid Murashige and Skoog medium lacking hormones. Cut achenes began germinating 5 days after culture and achieved maximum germination (97% to 100%) in less than 2 weeks, compared to whole achenes, which began to germinate 7 to 10 days after sowing and required more than 7 weeks for maximum germination (<50%). Enhanced germination of cut achenes was a general phenomenon since achenes from 231 hybrid crosses responded similarly. Following placement on culture medium, cut achenes could be stored up to 8 weeks at 4C then removed to 27C, where germination and seedling development occurred at percentages and rates comparable to freshly cut achenes. Achenes did not require stratification before cutting to exhibit increased germination. Nearly 100% of the achenes from freshly harvested red-ripe, pink and white strawberries germinated after cutting and culture, although cut achenes from white and pink berries germinated more slowly than those from red-ripe berries. Achenes from green berries, whether whole or cut, did not germinate. This method of “embryo rescue” could be used to generate more seedlings from poorly germinating hybrid crosses, would considerably decrease the time from sowing to seedling production compared to traditional means, and would produce seedlings of uniform age for subsequent field evaluation.


Sign in / Sign up

Export Citation Format

Share Document