scholarly journals Oxygen uptake during mineralization of humic substances from Infernão Lagoon (São Paulo, Brazil)

2004 ◽  
Vol 64 (3b) ◽  
pp. 583-590 ◽  
Author(s):  
M. B. Cunha-Santino ◽  
I. Bianchini JR.

Assays were carried out to evaluate the dissolved oxygen uptake resulting from mineralization of humic substances (fulvic acid (FA) and humic acid (HA)) from different sources: sediment, dissolved organic matter (DOM) of 120-day decomposed aquatic macrophyte (Scirpus cubensis and Cabomba piauhyensis), and lagoon DOM. The experiments were also aimed at estimating the oxygen uptake coefficient of the mineralization. About 20-30 mg of substrate were added to 1.1 liters of water from Infernão Lagoon (21º33' to 21º37'S; 47º45' to 47º51'W). The solutions were aerated and the dissolved oxygen (DO) was monitored during 40 days. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were estimated after 80 days of the experiment. Anaerobic processes were avoided by aerating the solutions. The results were fitted to a first-order kinetics model, from which the uptake of oxygen parameters was obtained. Oxygen consumption (OC) ranged from 4.24 mg L-1 (HA - S. cubensis) to 33.76 mg L-1 (FA - sediment). The highest deoxygenation coefficient (kD) was observed during mineralization of FA - DOM (0.299 day-1), followed in decreasing order by FA - S. cubensis, HA - sediment, HA - S. cubensis, FA - sediment, and FA - C. piauhyensis (0.282; 0.255; 0.178; 0.130, and 0.123 day-1, respectively). The carbon analyses indicated that the FA and HA samples at the end of the experiment presented a decay that varied from 15.23% to 42.35% and that the FA and HA conversions into POC were relatively low (from 0.76% to 3.94%).

2013 ◽  
Vol 10 (4) ◽  
pp. 2379-2392 ◽  
Author(s):  
B. Guenet ◽  
T. Eglin ◽  
N. Vasilyeva ◽  
P. Peylin ◽  
P. Ciais ◽  
...  

Abstract. Soil is the major terrestrial reservoir of carbon and a substantial part of this carbon is stored in deep layers, typically deeper than 50 cm below the surface. Several studies underlined the quantitative importance of this deep soil organic carbon (SOC) pool and models are needed to better understand this stock and its evolution under climate and land-uses changes. In this study, we tested and compared three simple theoretical models of vertical transport for SOC against SOC profiles measurements from a long-term bare fallow experiment carried out by the Central-Chernozem State Natural Biosphere Reserve in the Kursk Region of Russia. The transport schemes tested are diffusion, advection and both diffusion and advection. They are coupled to three different formulations of soil carbon decomposition kinetics. The first formulation is a first order kinetics widely used in global SOC decomposition models; the second one, so-called "priming" model, links SOC decomposition rate to the amount of fresh organic matter, representing the substrate interactions. The last one is also a first order kinetics, but SOC is split into two pools. Field data are from a set of three bare fallow plots where soil received no input during the past 20, 26 and 58 yr, respectively. Parameters of the models were optimised using a Bayesian method. The best results are obtained when SOC decomposition is assumed to be controlled by fresh organic matter (i.e., the priming model). In comparison to the first-order kinetic model, the priming model reduces the overestimation in the deep layers. We also observed that the transport scheme that improved the fit with the data depended on the soil carbon mineralisation formulation chosen. When soil carbon decomposition was modelled to depend on the fresh organic matter amount, the transport mechanism which improved best the fit to the SOC profile data was the model representing both advection and diffusion. Interestingly, the older the bare fallow is, the lesser the need for diffusion is, suggesting that stabilised carbon may not be transported within the profile by the same mechanisms than more labile carbon.


2002 ◽  
Vol 62 (4a) ◽  
pp. 557-564 ◽  
Author(s):  
A. L. BITAR ◽  
I. BIANCHINI Jr.

Assays were carried out to evaluate the consumption of dissolved oxygen resulting from mineralisation processes in resources usually found in aquatic systems. They were also aimed at estimating the oxygen uptake rate of each investigated process. Experiments were conducted using substrates from 3 different places. A fixed amount of substrate was added to 5 litres of water from Lagoa do Infernão that was previously filtered with glass wool. After adding the substrates the bottles were aired and the amount of dissolved oxygen and the temperature were monitored for 55 days. The occurrence of anaerobic processes was avoided by reoxygenating the bottles. The experimental results were fitted to a first order kinetics model, from which the consumption of dissolved oxygen owing to mineralisation processes was obtained. The amount of oxygen uptake from the mineralisation processes appeared in the following decreasing order: Wolffia sp., Cabomba sp., Lemna sp., DOM (Dissolved Organic Matter), Salvinia sp., Scirpus cubensis, stem, Eichhornia azurea, sediment and humic compounds. The deoxygenation rates (day-1) were: 0.267 (humic compounds), 0.230 (Lemna sp.), 0.199 (E. azurea), 0.166 (S. cubensis), 0.132 (sediment), 0.126 (DOM), 0.093 (Cabomba sp.), 0.091 (stem), 0.079 (Salvinia sp. and Wolffia sp.). From these results, 2 groups of resources could be identified: the first one consists of detritus with higher amounts of labile (ready to use) compounds, which show a higher global oxygen uptake during the mineralisation process; the second one consists mainly of resources that show refracting characteristics. However, when the consumption rates are analysed it is noted that the mineralised parts of the refracting substrates can be easier to process than the labile fractions of the less refracting resources.


2018 ◽  
Vol 106 (11) ◽  
pp. 909-916
Author(s):  
Louisa Bounemia ◽  
Abdelhamid Mellah

Abstract The pretreatment of the phosphoric acid is a stage of utmost importance leading to an optimal recovery of the uranium present in this acid. To this end, the degradation of the organic matter which obstructs considerably this recovery was tested by γ irradiation. This study lies within the scope of the radiation/matter interaction; concerning the use of the γ irradiator as proceed of phosphoric acid purification by the degradation of di butyl phthalate (DBP). Studies of the interaction of γ radiation with phosphoric acid solutions polluted by an organic matter concern the study of the influence of some parameters such as: dose rate (0.5–35 kGy), initial concentration (50–500 mg/L) of the pollutant, pH and % in P2O5 on the degradation of organic matter by γ irradiation. The reactions followed pseudo first order kinetics for different initial concentrations. The results made it possible to say that the degradation of di butyl phthalate by γ irradiation is dependent on the amount of the concentration of DBP and pH. The G-values decreased with absorbed doses, and increased with higher initial concentrations.Purification of phosphoric acid by γ radiation does not degrade the quality of this acid.


2003 ◽  
Vol 46 (4) ◽  
pp. 723-729 ◽  
Author(s):  
Marcela Bianchessi da Cunha-Santino ◽  
Irineu Bianchini Júnior

Assays were carried out to evaluate the oxygen consumption resulting from mineralization of different organic compounds: glucose, sucrose, starch, tannic acid, lysine and glycine. The compounds were added to 1 l of water sample from Monjolinho Reservoir. Dissolved oxygen and dissolved organic carbon were monitored during 20 days and the results were fitted to first order kinetics model. During the 20 days of experiments, the oxygen consumption varied from 4.5 mg.l-1 (tannic acid) to 71.5 mg.l-1 (glucose). The highest deoxygenation rate (kD) was observed for mineralization of tannic acid (0.321 day-1) followed by glycine, starch, lysine, sucrose and glucose (0.1004, 0.0504, 0.0486, 0.0251 and 0.0158 day-1, respectively). From theoretical calculations and oxygen and carbon concentrations we obtained the stoichiometry of the mineralization processes. Stoichiometric values varied from 0.17 (tannic acid) to 2.55 (sucrose).


2008 ◽  
Vol 1 (1) ◽  
pp. 17-51 ◽  
Author(s):  
G. Shaffer ◽  
S. Malskær Olsen ◽  
J. O. Pepke Pedersen

Abstract. A new, low-order Earth System Model is described, calibrated and tested against Earth system data. The model features modules for the atmosphere, ocean, ocean sediment, land biosphere and lithosphere and has been designed to simulate global change on time scales of years to millions of years. The atmosphere module considers radiation balance, meridional transport of heat and water vapor between low-mid latitude and high latitude zones, heat and gas exchange with the ocean and sea ice and snow cover. Gases considered are carbon dioxide and methane for all three carbon isotopes, nitrous oxide and oxygen. The ocean module has 100 m vertical resolution, carbonate chemistry and prescribed circulation and mixing. Ocean biogeochemical tracers are phosphate, dissolved oxygen, dissolved inorganic carbon for all three carbon isotopes and alkalinity. Biogenic production of particulate organic matter in the ocean surface layer depends on phosphate availability but with lower efficiency in the high latitude zone, as determined by model fit to ocean data. The calcite to organic carbon rain ratio depends on surface layer temperature. The semi-analytical, ocean sediment module considers calcium carbonate dissolution and oxic and anoxic organic matter remineralisation. The sediment is composed of calcite, non-calcite mineral and reactive organic matter. Sediment porosity profiles are related to sediment composition and a bioturbated layer of 0.1 m thickness is assumed. A sediment segment is ascribed to each ocean layer and segment area stems from observed ocean depth distributions. Sediment burial is calculated from sedimentation velocities at the base of the bioturbated layer. Bioturbation rates and oxic and anoxic remineralisation rates depend on organic carbon rain rates and dissolved oxygen concentrations. The land biosphere module considers leaves, wood, litter and soil. Net primary production depends on atmospheric carbon dioxide concentration and remineralization rates in the litter and soil are related to mean atmospheric temperatures. Methane production is a small fraction of the soil remineralization. The lithosphere module considers outgassing, weathering of carbonate and silicate rocks and weathering of rocks containing old organic carbon and phosphorus. Weathering rates are related to mean atmospheric temperatures. A pre-industrial, steady state calibration to Earth system data is carried out. Ocean observations of temperature, carbon 14, phosphate, dissolved oxygen, dissolved inorganic carbon and alkalinity constrain air-sea exchange and ocean circulation, mixing and biogeochemical parameters. Observed calcite and organic carbon distributions and inventories in the ocean sediment help constrain sediment module parameters. Carbon isotopic data and carbonate vs. silicate weathering fractions are used to estimate initial lithosphere outgassing and rock weathering rates. Model performance is tested by simulating atmospheric greenhouse gas increases, global warming and model tracer evolution for the period 1765 to 2000, as forced by prescribed anthropogenic greenhouse gas inputs and other anthropogenic and natural forcing. Long term, transient model behavior is studied with a set of 100 000 year simulations, forced by a slow, 5000 Gt C input of CO2 to the atmosphere, and with a 1.5 million year simulation, forced by a doubling of lithosphere CO2 outgassing.


2018 ◽  
Vol 8 (3) ◽  
pp. 459-468
Author(s):  
Cristiane Figueira da Silva ◽  
Marcos Gervasio Pereira ◽  
Júlio César Fernandes Feitosa ◽  
Ariovaldo Machado Fonseca Júnior ◽  
João Henrique Gaia-Gomes ◽  
...  

The aim of this work was to evaluate the influence of the conversion of forest systems to agricultural systems in the organic matter compartments, aggregation and soil chemical attributes, in the Atlantic Forest. The evaluated systems were: annual crop (ACr); perennial agriculture (PAg); pasture; and secondary forest early (SFES), medium (SFMS), and advanced stage (SFAS). Soil samples were collected at the layer of 0-5 cm depth and quantified the total organic carbon (TOC), C of humic substances, oxidizable C, granulometric fractions of soil organic matter (SOM), soil chemical attributes, soil aggregation and glomalin-related soil protein (GRSP-total and GRSP-easily extractable) in different aggregate classes. It was observed a reduction of the TOC, particulate organic carbon (POC), humic substances and oxidizable C in the PAg and ACr areas comparing to pasture and forest systems. Moreover, the pH values increased whereas P content decreased in comparison with SFAS. As for aggregation, the PAg and the ACr decreased by around 35% and 20% the mean weight diameter of aggregates, respectively, compared to the average values found in the forestry systems, and 34% and 45%, respectively in relation to pasture. In general, GRSP-total were reduced by agriculture. Thus, it appears that the agriculture which has been practiced is altering negatively the soil chemical, physical and biological attributes.


2018 ◽  
Vol 15 (7) ◽  
pp. 436 ◽  
Author(s):  
Gabriel Dulaquais ◽  
Johann Breitenstein ◽  
Matthieu Waeles ◽  
Rémi Marsac ◽  
Ricardo Riso

Environmental contextDissolved organic matter (DOM), a key parameter in aquatic biogeochemistry, is difficult to characterise owing to its variable composition and structure. We report a chromatographic method with carbon, nitrogen and absorbance detection able to record the size distribution of DOM and changes in its composition. The method could be used to identify additional sources to river or coastal waters as well as monitoring the DOM size/reactivity continuum in open oceans. AbstractWe studied the performance and limitations of size-exclusion chromatography with organic carbon, ultraviolet and organic nitrogen detectors (SEC-OCD-UVD-OND) for characterising dissolved organic matter (DOM) in estuarine and marine waters. We identified a strong salt effect on dissolved organic carbon (DOC) determination; however, calibration gave good results at salinity levels close to those of the sample analysed (ΔS ± 2 psu (practical salinity units)), with limited matrix effects, enabling an accurate measurement of DOC, as demonstrated by an intercalibration exercise. The repeatability, reproducibility and limit of detection (3 ppb for both carbon and nitrogen) for the three detectors demonstrated the robustness of the method for a wide range of natural waters, including carbon-rich freshwaters and deep seawaters with low carbon content (6000 ppb-C to 300 ppb-C). Deeper analysis of the SEC demonstrated that proteins and polysaccharides are partly fractionated within the column, and that terrestrial humic substances, isolated on a XAD-8 resin, can also be eluted in both fractions associated with biopolymers and low-molecular-weight neutrals. Application of the method to the study of DOM along a macrotidal estuary that was influenced by agricultural activities revealed significant changes in its composition despite a conservative DOC distribution. Distinct origins and qualities of high-molecular-weight (>500 kDa) organic compounds were identified for riverine and marine end-members. A new diagram to track changes in DOM lability is proposed to complete the humic-substances diagram.


Author(s):  
F. A. J. Armstrong ◽  
Susan Tibbitts

A photochemical reactor, using a medium power mercury arc lamp for oxidation of organic matter in sea water, is described. The decomposition of some known compounds in distilled water and in sea water, using a 380 W lamp, was followed. First order kinetics with rate constants in the range 0·2–4·0 h−1 were observed. All the nitrogen compounds tested, including urea and some of its derivatives, were oxidized quantitatively. Breakdown of phosphorus compounds was rapid, but polyphosphate esters yielded polyphosphate ion which was only slowly hydrolysed to reactive orthophosphate. If polyphosphate is to be determined, hydrolysis by heating with acid should follow the irradiation. Some samples of English Channel water contained 0·02-0–05 fig-axom P/1. as organic polyphosphate.


2016 ◽  
Vol 29 (3) ◽  
pp. 578-586
Author(s):  
TONY JARBAS FERREIRA CUNHA ◽  
VANDERLISE GIONGO ◽  
ALESSANDRA MONTEIRO SALVIANO ◽  
FLÁVIO ADRIANO MARQUES ◽  
LUCIANO PASQUALOTO CANELLAS

ABSTRACT - The aim of this study was to assess the organic matter changes in quantity and quality, particularly of the humic fraction in the surface layer (0-20 cm), of a Typic Plinthustalf soil under different management of plant mixtures used as green manure for mango (Mangifera indica L.) crops. The plant mixtures, which were seeded between rows of mango trees, were formed by two groups of leguminous and non -leguminous plants. Prior to sowing, seeds were combined in different proportions and compositions constituting the following treatments: 100% non-leguminous species (NL); 100% leguminous species (L); 75% L and 25% NL; 50% L and 50% NL; 25% L and 75% NL; and 100% spontaneous vegetation, considered a control. The plant mixtures that grew between rows of mango trees caused changes in the chemical composition of the soil organic matter, especially for the treatments 50% L and 50% NL and 25% L and 75% NL, which increased the content of humic substances in the soil organic matter. However, the treatment 25% L and 75% NL was best at minimising loss of total organic carbon from the soil. The humic acids studied have mostly aliphatic characteristics, showing large amounts of carboxylic and nitrogen groups and indicating that most of the organic carbon was formed by humic substances, with fulvic acid dominating among the alkali soluble fractions.


1990 ◽  
Vol 38 (3A) ◽  
pp. 221-238 ◽  
Author(s):  
E.L.J. Verberne ◽  
J. Hassink ◽  
P. de Willigen ◽  
J.J.R. Groot ◽  
J.A. van Veen

A mathematical model was developed to describe carbon (C) and nitrogen (N) cycling in different soil types, e.g. clay and sandy soils. Transformation rates were described by first-order kinetics. Soil organic matter is divided into four fractions (including microbial biomass pool) and three fractions of residues. The fraction of active soil organic matter was assumed to be affected by the extent of physical protection within the soil, as was the soil microbial biomass. The extent of protection influenced the steady state level of the model, and, hence, the mineralization rates. The mineralization rate in fine-textured soils is lower than in coarse-textured soils; in fine-textured soils a larger proportion of the soil organic matter may be physically protected. The availability of organic materials as a substrate for microorganisms is not only determined by their chemical composition, but also by their spatial distribution in the soil. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document