scholarly journals Phenological behavior of feijoa accessions in their main diversity center

Author(s):  
Fernando David Sánchez-Mora ◽  
Luciano Saifert ◽  
Marlise Nara Ciotta ◽  
Humberto Nunes Ribeiro ◽  
Luciane Isabel Malinovski ◽  
...  

Abstract: The objective of this work was to identify the minimum base temperature (Tb) and the maximum base temperature (TB) to predict the thermal time for six phenological stages of feijoa (Acca sellowiana) accessions. During ten noncontinuous harvests (2004 to 2017), 247 feijoa accessions, maintained in the Feijoa Active Germplasm Bank, in São Joaquim, in the state of Santa Catarina, Brazil, had their data recorded for: initial sprouting (IS), initial flowering (IF), end of flowering (EF), beginning of harvest (BH), and end of harvest (EH). Tb and TB were estimated by the Arnold’s method of least variability, and the TT requirements were obtained by Ometto’s method. Tb at 7.76°C and TB at 17.0°C were necessary when feijoa plants started growing (IS stage) just after winter; and Tb at 10.6°C and TB at 19.5°C were the calculated values from IS until BH. The budding stage of the accessions began in the mid-September (50.6%); flowering occurred predominantly in November (90%); and harvest began in March and lasted until May. About 176 days, with 1,014.4 growing degree-days, are necessary to complete the productive cycle from IS until BH. The early, intermediary, and late fruit-ripening accessions show different thermal time requirements.

2010 ◽  
Vol 40 (9) ◽  
pp. 1815-1820 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu

To improve the predictability of bud burst and growth of boreal trees under varying climate, the thermal time for bud break in white spruce ( Picea glauca (Moench) Voss) seedlings was evaluated under a range of temperature conditions in controlled environment chambers. Thermal time requirements were calculated as the sum of growing degree days or growing degree hours above base temperatures ranging from –1 to 5 °C. The results indicated that the common modeling approach, which uses a high base temperature of 5 °C and growing degree days, may not be appropriate for future climatic conditions. Estimates of thermal time requirements using a base temperature of 5 °C varied considerably among temperature treatments and thus would reduce the predictability of bud burst under changing climate. In contrast, estimates of thermal time requirements with lower temperatures closer to 1 °C were relatively consistent among treatments. Growing degree hour models were less sensitive to base temperature than degree day models. These results should help in the selection of appropriate base temperatures and thermal time models in quantification of thermal time for bud burst modeling in other boreal trees.


2014 ◽  
Vol 24 (4) ◽  
pp. 321-330 ◽  
Author(s):  
J.P. del Monte ◽  
P.L. Aguado ◽  
A.M. Tarquis

AbstractA population-based modelling approach was used to predict the occurrence of germination inSolanum sarrachoides(SOLSA) for different treatments. Seeds collected in Toledo (Spain) were exposed to constant temperatures, to temperatures alternating between 10 and 30°C and to gibberellins (GAs; 0, 50, 100, 150 and 1000 ppm) during a 24-h imbibition period. The following parameters were measured: base temperature (Tb), mean thermal time (θT(50)) and the standard deviation of thermal time (σθT). The SOLSA seeds only germinated at constant temperatures when the highest GA concentration was applied. The thermal model suggests that the induction and loss of physiological dormancy following seed dispersal is achieved when temperatures vary and when a mean thermal time of 66 growing degree-days (d°C) and aTbvalue of 16°C are achieved when no GA treatment was added. The concentration of GA applied under conditions of alternating temperatures has an additive effect, reducing θT(50) up to threefold, from basal level (66 d°C) to 19.40 d°C, when the 1000 ppm GA treatment was applied. In this last case, the germination was accelerated by reducingTbto 14°C. A 5–10°C change in temperature and a range of average temperatures of 20–27.5°C promoted the germination of SOLSA seeds to the greatest extent in the absence of GA. However, these conditions are not frequently encountered in the irrigated areas of the studied region; this finding could explain the limited ability of SOLSA to expand its range within this area.


2016 ◽  
Vol 76 (4) ◽  
pp. 975-982 ◽  
Author(s):  
N. A. S. Nunes ◽  
A. V. Leite ◽  
C. C. Castro

Abstract Phenology and reproductive biology of cultivated species are important for the comprehension of the requirements for fruit and seed production and the management of pollinators. This study aimed to characterise the phenology, reproductive biology and growing degree days of the grapevine ‘Isabel’ (Vitis labrusca) in northeastern Brazil during January 2011 (P1), Augst 2011 (P2), April 2012 (P3) and August 2012 (P4). We recorded the duration (days) of the phenological stages, pruning (P), woolly bud (W), budburst (B), inflorescence development (ID), flowering (F), ripening (R) and harvest (H). We analysed the floral biology, the sexual system and the breeding system. We measured the growing degree days (GDD) required to reach the subperiods P-B, B-F and F-H. The periods P1, P2, P3 and P4 lasted for 116, 125, 117 and 130 days, respectively. The number of days of harvest were similar in the same dry (P1 and P3) and rainy (P2 and P4) periods. All the periods that we recorded were shorter than those observed in other regions of Brazil, which may be attributable to the mean temperature and carbohydrate metabolism. The flowers are green, hermaphroditic, with an odour of mignonette, low pollen viability and autogamous. The base temperature of 10°C was considered the most adequate for the subperiods as has been documented for other grape varieties in Brazil. Thus, temperature was also the most adequate for the cycles, presenting a smaller standard deviation (0.119, 0.147, 0.156 and 0.153 to P1, P2, P3 and P4, respectively) when compared to a base temperature of 12°C (0.122, 0.158, 0.165 and 0.160 to P1, P2, P3 and P4, respectively). The higher and the lower observed GDD were 1972.17 and 1870.05, respectively, both above the values recorded in other parts of Brazil for same variety. The phonological results, including knowledge of growing degree days, are important to the planning of cultures at the study site and in other regions that have similar climatic conditions and make it possible to pre-determine the harvest.


2016 ◽  
Vol 21 (3) ◽  
pp. 376
Author(s):  
Charleston Gonçalves ◽  
Carlos Eduardo Ferreira Castro ◽  
Mário José Pedro Júnior ◽  
Maria Luiza Sant’anna Tucci

The growing of consumer market demands introduction of new species of flowers and cultivars primarily for production under protected cultivation. The zinnia by the quickness of production can be regarded as an alternative, however demand studies by the lack of information in the literature. We evaluated the duration of different periods, the base temperature and thermal accumulation, expressed as degree-days for the potted zinnia ‘Profusion Cherry’, conducted under protected cultivation for different phenological subperiods. The test was conducted in a greenhouse covered with plastic and closed laterally with shading-net and the duration of subperiods were made to twenty times after sowing. The base temperature was determined by relative development and values-based temperature and thermal time in degree-days (DD). The results for the different phases were, respectively: first open flower-planting: 4.1 °C and GD 838, first open flower - 50% of flowers open: 3.0 °C and 184 GD and 50% of flowers open - senescence: 6.9 °C and 238 GD.


Author(s):  
Beatrix HAGGARD ◽  
Teodor RUSU ◽  
David WEINDORF ◽  
Horea CACOVEAN ◽  
Paula MORARU ◽  
...  

The Transylvanian Plain, Romania is an important region for agronomic productivity. However, limited soils data and adoption of best management practices hinder land productivity. Soil temperatures of the Transylvanian Plain were evaluated using a set of twenty datalogging stations positioned throughout the plain. Soil temperatures were monitored at the surface and at 10, 30, and 50 cm depths, and soil moisture was monitored at 10 cm. Preliminary results indicate that most soils of the Transylvanian Plain will have a mesic temperature regime. However, differences in seasonal warming and cooling trends across the plain were noted. These have important implications for planting recommendations. Growing degree days (GDDs) are preferred over maturity ratings, because they can account for temperature anomalies. The crop being considered for this study was corn. The base temperature (BT) was set at 10oC, and the upper threshold was 30oC. Two methods were used to calculate GDDs; 1) minimum and maximum daily temperatures, and 2) 24 h of averaged temperature data. Growing degree days were run from 110-199 day of year (DOY) to represent approximate planting date to tasseling. The DOY that 694 accumulated growing degree days (AGDDs) was reached at each site was then analyzed to identify differences across the TP. Three sites failed to reach 694 AGDDs by DOY 199, and were excluded from comparisons to other results. Averaged values were used to create spline interpolation maps with ArcMap 9.2 (ESRI, Redlands, CA, USA). The southeastern portion of the TP was found to tassel a month earlier assuming a planting date of 109 DOY. Four DeKalb® corn hybrids were then selected based on GDDs to tasseling, drydown, drought tolerance, and insect resistance. With a better understanding of the GDD trends across the TP, more effective planting and harvesting could be accomplished by Romanian farmers to maximize agronomic production.


Author(s):  
Venkatesh Bondade ◽  
Sanjeev K Deshpande

Growing degree days (GDD) or heat units accumulation is the major factor that affects the dry matter production in the plants. In the present investigation eleven genotypes were used to screen for temperature insensitivity through staggered plantings across the seasons in a year. Days to flowering initiation was recorded and base temperature (Tb) was determined using mean daily air temperature (MAT). GDD of individual genotypes was estimated using base temperatures of particular genotypes. It was observed that the GDD, days to flowering initiation and yield were exhibited high variation across the seasons, the flowering time from days to planting (FTDAP) registered significant negative correlation with GDD and MAT and positively correlated with yield. Whereas GDD is positively correlated with MAT and negatively correlated with yield. Here three genotypes namely, IC202926, IC198326 and IC257428 were identified as temperature insensitive genotypes as their performances were comparable across the seasons without much fluctuations.


2015 ◽  
Vol 49 (5) ◽  
Author(s):  
Harinder Singh ◽  
Guriqbal Singh

A field experiment was conducted during <italic>kharif</italic> 2012 to assess the effects of sowing time (1, 10, 20, and 30 July) and planting geometry (30 cm × 10 cm and 22.5 cm × 10 cm) on the growth, phenology and thermal indices of mungbean varieties (PAU 911 and ML 818). The crop sown on 1 July recorded higher plant height and dry matter accumulation (DMA) and required higher thermal indices <italic>viz</italic>. accumulated growing degree days (AGDD), accumulated photothermal units (APTU) and accumulated heliothermal units (AHTU) to complete various phenological stages as compared to all other sowing times. Mungbean variety PAU 911 took lesser days to complete various phenological stages and required lesser AGDD, AHTU and APTU as compared to ML 818. Plants in planting geometry of 30 cm ×10 cm recorded significantly higher DMA and attained significantly higher AGDD, AHTU and APTU as compared to in 22.5 cm ×10 cm geometry.


1970 ◽  
Vol 40 (2) ◽  
pp. 149-153 ◽  
Author(s):  
MR Islam ◽  
S Sikder

Variations in the phenology and degree days of five fine rice cultivars viz., Rajshahi swarna, Silkumul, Kataribhog, Lal pajam and Sanla under organic and inorganic cultural conditions were studied following a split plot design. The requirement of days to attain various phenological stages was highest in Rajshahi swarna, medium in Silkumul, Kataribhog and Lal pajam and the lowest in Sanla for both the cultural conditions. The growing degree days (GDD) and heat use efficiency (HUE) were slightly higher under inorganic than organic culture because of higher life span of rice cultivars in inorganic culture. The highest GDD and HUE were found in Rajshahi swarna, whereas the lowest in Sanla. Results also showed that the requirement of days and GDD were initially higher up to maximum tillering stage under organic culture but thereafter these requirements were greater under inorganic culture for all the cultivars. The grain yield was somewhat lower in organic compared to inorganic culture. In Rajshahi highest grain yield of swarna was 2.90 and 2.74 t/ha under inorganic and organic culture, respectively. Key words: Phenology; Growing degree days; Heat use efficiency; Fine rice DOI: http://dx.doi.org/10.3329/bjb.v40i2.9770   Bangladesh J. Bot. 40(2): 149-153, 2011 (December)  


2021 ◽  
Vol 26 (2) ◽  
pp. 160-169
Author(s):  
Ruth Amanda Acero Camelo ◽  
Manuel Ricardo Esteban Molina ◽  
Alfonso Parra Coronado ◽  
Gerhard Fischer ◽  
Juan Evangelista Carulla Fornaguera

In order to estimate the base temperature (Bt) of growth through the appearance of leaves and calculate the phyllochron for kikuyu grass, three plots were established on three farms in the Provincia of Ubaté (Cundinamarca, Colombia) located at different altitudes (2560, 2640, 3143 m. a. s. l.). Measurements were made in four cycles in a period of eight months. The Bt was estimated by the least coefficient of variation method using a second order regression model and the model obtained was validated by the cross-validation method. The Bt values for the first, second, third and fourth leaf were 4.02, 3.68, 3.93, and 3.62 ° C, respectively. For the appearance of the first leaf, the kikuyu required more thermal time (TT) (97.5 accumulated growing degree days (AGDD)) than for the second (74.2 AGDD), third (73.8 AGDD) and fourth leaf (76.0 AGDD) (p<0.05). There were no differences in TT among farms (p> 0.05). There was a tendency to a greater number of days required to reach each leaf stage in the farm located at higher altitude and with lower mean temperature. The validation showed an adequate adjustment (r2 = 0.94) and a substantial concordance (CCC = 0.97) between the observed values and the predicted values for the estimated TT with the Bt value obtained for each leaf stage. The results of Bt for kikuyu grass obtained, will allow to make more precise predictions about the phyllochron and generate growth models close to reality.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 611-614 ◽  
Author(s):  
Gaétan Bourgeois ◽  
Sylvie Jenni ◽  
Hélène Laurence ◽  
Nicolas Tremblay

The heat-unit system, involving the sum of daily mean temperatures above a given base temperature, is used with processing pea (Pisum sativum L.) to predict relative maturity during the growing season and to schedule planting dates based on average temperature data. The Quebec pea processing industry uses a base temperature of 5 °C to compute growing-degree days (GDD) between sowing and maturity. This study was initiated to verify if the current model, which uses a base temperature of 5 °C, can be improved to predict maturity in Quebec. Four pea cultivars, `Bolero', `Rally', `Flair', and `Kriter', were grown between 1985 and 1997 on an experimental farm in Quebec. For all cultivars, when using a limited number of years, a base temperature between 0.0 and 0.8 °C reduced the coefficient of variation (cv) as compared with 5.0 °C, indicating that the base temperature used commercially is probably not the most appropriate for Quebec climatic conditions. The division of the developmental period into different stages (sowing until emergence, emergence until flowering, and flowering until maturity) was also investigated for some years. Use of base temperatures specific for each crop phase did not improve the prediction of maturity when compared with the use of an overall base temperature. All years for a given cultivar were then used to determine the base temperature with the lowest cv for predicting the time from sowing to maturity. A base temperature from 0 to 5 °C was generally adequate for all cultivars, and a common base temperature of 3.0 °C was selected for all cultivars. For the years and cultivars used in this study, the computation of GDD with a base temperature of 3 °C gave an overall prediction of maturity of 2.0, 2.4, 2.2, and 2.5 days based on the average of the absolute values of the differences for the cultivars Bolero, Rally, Flair, and Kriter, respectively.


Sign in / Sign up

Export Citation Format

Share Document