scholarly journals Computational and experimental simulation to analyze loss in concrete cover by reinforcement deformation in solid slabs

Author(s):  
Ana Paula Maran ◽  
Maria Fernanda Fávero Menna Barreto ◽  
Denise Carpena Coitinho Dal Molin ◽  
João Ricardo Masuero

ABSTRACT Adequate cover thickness contributes to the correct performance of reinforced concrete structures. Spacers are recommended in standards to maintain a concrete cover; however, many regulations do not provide sufficient guidelines for their use, resulting in poor construction. A research program was developed for solid slabs through computational and experimental simulations to minimize errors in the cover by assessing different reinforcement bar diameters and spacer distribution, considering realistic element construction and standards, combining theory with practice. The results show that the use of spacers does not guarantee the design cover for some reinforcement bar diameters, as 4.2 and 5.0 mm, and regardless of the spacer distribution configuration assessed, these meshes undergo permanent deformation, thereby damaging the cover and consequently impact structural performance. Meshes of 6.3 and 8.0 mm diameters present deformation within the cover tolerance. Therefore, it is preferable to choose bigger diameters and larger mesh spacing to guarantee the projected cover, contributing to the correct performance of the structures, solving one of the major problems in this type of construction.

2016 ◽  
Vol 9 (6) ◽  
pp. 911-952
Author(s):  
M. F. F. Menna Barreto ◽  
◽  
A. P. Maran ◽  
D. C. C. Dal Molin ◽  
J. R. Masuero

ABSTRACT The durability of reinforced concrete structures is highly dependent on the characteristics of the concrete cover to reinforcement and its thickness. The failure to obtain cover thickness is the factor with the largest influence on the premature corrosion of the reinforcement, which in turn is the main deterioration form of reinforced concrete structures. Studies indicate that the designed cover is not reached in the current constructions that adopt this structural solution, configuring a chronic, and not a sporadic problem. One of the observed causes for the failure in obtaining the minimum standardized cover is the incorrect use of spacers and the use of inadequate spacers. This is made more serious by the absence of a Brazilian standard to regulate the product and its use and, consequently, the absence of a quality certification from the responsible regulating agency. Focusing on spacers, requirements and performance criteria were proposed, in addition to methods for their assessment, with most being taken and adapted from international standards. Subsequently, some spacers available on the market were effectively tested according to the proposed methodology. No spacer model proved to be satisfactory according to the established performance approach. However, for each criteria and assessment methods proposed, there was, at least, one spacer model at the market which satisfied them, so it can be said that the criteria and methods are suitable for spacers performance evaluation. Faced with the performance diversity of the spacer models on offer, the need for a regulatory Brazilian standard for this product was confirmed in order to delimit the quality of spacers available on the market and to eliminate this variable as one of the causes for not obtaining the correct covering.


2013 ◽  
Vol 61 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Guofu Qiao ◽  
Yi Hong ◽  
Tiejun Liu ◽  
Jinping Ou

Purpose – The aim of this paper was to investigate the passive corrosion control and active corrosion protective effect of the reinforced concrete structures by electrochemical chloride removal (ECR) method and inhibitors approach, respectively. Design/methodology/approach – The concentration of aggressive chloride ion distributed from the reinforcing steel to the surface of the concrete cover was analyzed during the ECR processes. Besides, the half-cell potential, the concrete resistance R c , the polarization resistance R p and the capacitance of double layer C dl of the steel/concrete system were used to characterize the electrochemical performance of the concrete prisms. Findings – The effectiveness of ECR could be enhanced by increasing the amplitude of potential or prolonging the time. Inhibitor SBT-ZX(I) could successfully prevent the corrosion development of the reinforcing steel in concrete. Originality/value – The research provides the scientific basis for the practical application of ECR and inhibitors in the field.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yubin Tian ◽  
Junran Liu ◽  
Hengheng Xiao ◽  
Yi Zhang ◽  
Qingcheng Mo ◽  
...  

This paper presents the results of an experimental research designed to investigate the combined effects of corrosion rate, concrete cover thickness, and stirrup spacing on the bond performance between reinforcement and concrete of reinforced concrete (RC) specimens. The RC specimens were immersed into sodium chloride solution to eliminate the passivation film on reinforcement. Then, an accelerated corrosion method was applied to corrode reinforcement embedded in concrete specimens. Pullout test was carried out to establish empirical formulas for ultimate slip and ultimate bond strength of RC specimens with three different corrosion rates, different concrete cover thicknesses, and different stirrup spacings. In addition, the bond-slip relation model was developed to predict and evaluate the bond performance of RC specimens. Finally, the ultrasonic technology was used to detect the damage of RC specimens, and the corresponding nonlinear coefficient β was proposed to characterize the damage degree of RC specimens. The susceptibility of β on the damage of specimens was compared with that of ultrasonic velocity, indicating β was more appropriate to evaluate the damage of RC specimens.


2018 ◽  
Vol 11 (4) ◽  
pp. 856-875 ◽  
Author(s):  
A. M. GIL ◽  
B. FERNANDES ◽  
F. L. BOLINA ◽  
B. F. TUTIKIAN

Abstract Among the processes that involve the degradation of concrete structures subject to the high temperatures of a fire there is the spalling phenomenon. Its mechanisms are related to the thermal stress of the materials dilatations and pore pressure the process of vaporization of water during heating. The factors that influences in its occurrence are related to concrete properties, structural member characteristics or the exposure conditions, and their parameters are not clearly known yet. This paper aimed to study the influence of three concrete mixtures, four coating thicknesses and two bars diameters of longitudinal reinforcement in the spalling phenomena exposed to ISO 834 fire curve. The characterization of concrete were performed either of the axial compression strength tests, water absorption by capillary and mercury intrusion porosimetry, besides the fire resistance tests in real-scale specimens. It was concluded that the diameter of the bar does not have influence, while the mixture and the concrete cover thickness does. More spalling was recorded for the columns with thicker concrete cover and concrete compressive strength at 61,9 MPa, and although higher strength concrete have less permeability, this characteristic can be balanced with the higher tensile strength of this type of concrete.


2010 ◽  
Vol 452-453 ◽  
pp. 197-200 ◽  
Author(s):  
Zhen Qing Wang ◽  
Zhi Cheng Xue ◽  
Mu Qiao

For the mechanical properties of reinforced concrete under high temperature with large deterioration, the reliability of reinforced concrete beams have been largely discounted. A calculation of fire resistance based on failure probability is given by this paper. Reinforced concrete beam is usually working with cracks. Since each section with cracks has possibility of destruction, the reliability of the beam is calculated by the minimum value of n crack-sections’ resistance. The plastic zone resistance of concrete under high temperature is considered in this paper. A simple and feasible time-variant model of the resistance of reinforced concrete beams under fire and a reliability index analysis method of reinforced concrete beams under fire has been given. The action of ISO834 temperature rising curve on the reliability index of different specifications of concrete beams at different time is analyzed. The action of main parameters on the reliability index changes with time is shown. The fire resistance considers the failure probability is given. The results show that increase the reinforcement ratio and concrete cover thickness appropriately are effective measures to improve the fire resistance limit of reinforced concrete beams.


Author(s):  
M Iqbal Khiyon ◽  
M A A Kadir ◽  
A.R Mohd Sam ◽  
N Hasanah ◽  
R N Mohamed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document